2018 Volume 8 Issue 3
Article Contents

Joao Guilherme Caldas Steinstraesser, Rodrigo Cienfuegos, José Daniel Galaz Mora, Antoine Rousseau. A SCHWARZ-BASED DOMAIN DECOMPOSITION METHOD FOR THE DISPERSION EQUATION[J]. Journal of Applied Analysis & Computation, 2018, 8(3): 859-872. doi: 10.11948/2018.859
Citation: Joao Guilherme Caldas Steinstraesser, Rodrigo Cienfuegos, José Daniel Galaz Mora, Antoine Rousseau. A SCHWARZ-BASED DOMAIN DECOMPOSITION METHOD FOR THE DISPERSION EQUATION[J]. Journal of Applied Analysis & Computation, 2018, 8(3): 859-872. doi: 10.11948/2018.859

A SCHWARZ-BASED DOMAIN DECOMPOSITION METHOD FOR THE DISPERSION EQUATION

  • We propose a Schwarz-based domain decomposition method for solving a dispersion equation consisting on the linearized KdV equation without the advective term, using simple interface operators based on the exact transparent boundary conditions for this equation. An optimization process is performed for obtaining the approximation that provides the method with the fastest convergence to the solution of the monodomain problem.

    MSC: 35Q35;35Q53;65M55

  • 加载中
  • [1] X. Antoine, A. Arnold, C. Besse et al., A review of Transparent Boundary Conditions or linear and nonlinear Schrödinger equations, Commum. Comput. Phys., 2008, 4(4), 729-796.

    Google Scholar

    [2] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. T. R. Soc. S-A, 1972, 272(1220), 47-78.

    Google Scholar

    [3] C. Besse, M. Ehrhardt and I. Lacroix-Violet, Discrete Artificial Boundary Conditions for the linearized Korteweg-de Vries Equation, Numer. Meth. Part. D. E., 2016, 32(5), 1455-1484.

    Google Scholar

    [4] C. Besse and F. Xing, Schwarz waveform relaxation method for the onedimensional Schröedinger equation with general potential, Numer. Algorithms, 2017, 74(2), 393-426.

    Google Scholar

    [5] E. Blayo, D. Cherel and A. Rousseau, Towards optimized Scwharz methods for the Navier-Stokes equations, J. Sci. Comput., 2016, 66(1), 275-295.

    Google Scholar

    [6] M. J. Gander, L. Halpern and F. Nataf, Internal report no 469-Optimal Schwarz waveform relaxation for the one dimensional wave equation, Tech. rep., Ecole Polytéchnique-Centre de Mathématiques Appliquées, 2001.

    Google Scholar

    [7] L. Halpern and J. Szeftel, Optimized and Quasi-optimal Schwarz Waveform Relaxation for the one dimensional Schrödinger equation, in Domain Decomposition Methods in Science and Engineering XVⅡ (Edited by U. Langer, M. Discacciati, D. E. Keyes et al.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, 221-228.

    Google Scholar

    [8] C. Japhet and F. Nataf, The best interface conditions for Domain Decompostion methods:Absorbing Boundary Conditions, 2003. Https://www.ljll.math.upmc.fr/~nataf/chapitre.pdf.

    Google Scholar

    [9] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag., 1895, 5(39), 422-443.

    Google Scholar

    [10] P.-L. Lions, On the Schwarz alternating method.I, in Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Edited by R.Glowinski, G.Golub, G.Meurant and J.Périaux), SIAM, 1988, 1-42.

    Google Scholar

    [11] P.-L. Lions, On the Schwarz alternating method Ⅲ:a variant for nonoverlapping sub-domains, in Proceedings of the Third International Conference on Domain Decomposition Methods (Edited by T. Chan, R. Glowinski, J. Périaux and O. Widlund), 1990, 202-223.

    Google Scholar

    [12] C. Zheng, X. Wen and H. Han, Numerical solution to a linearized KdV equation on unbounded domain, Numer. Meth. Part. D. E., 2008, 24(2), 383-399.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(1027) PDF downloads(441) Cited by(0)

Access History

A SCHWARZ-BASED DOMAIN DECOMPOSITION METHOD FOR THE DISPERSION EQUATION

Funding: 

Abstract: We propose a Schwarz-based domain decomposition method for solving a dispersion equation consisting on the linearized KdV equation without the advective term, using simple interface operators based on the exact transparent boundary conditions for this equation. An optimization process is performed for obtaining the approximation that provides the method with the fastest convergence to the solution of the monodomain problem.

Reference (12)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint