2018 Volume 8 Issue 3
Article Contents

Makram Hamouda, Daozhi Han, Chang-Yeol Jung, Roger Temam. BOUNDARY LAYERS FOR THE 3D PRIMITIVE EQUATIONS IN A CUBE: THE ZERO-MODE[J]. Journal of Applied Analysis & Computation, 2018, 8(3): 873-889. doi: 10.11948/2018.873
Citation: Makram Hamouda, Daozhi Han, Chang-Yeol Jung, Roger Temam. BOUNDARY LAYERS FOR THE 3D PRIMITIVE EQUATIONS IN A CUBE: THE ZERO-MODE[J]. Journal of Applied Analysis & Computation, 2018, 8(3): 873-889. doi: 10.11948/2018.873

BOUNDARY LAYERS FOR THE 3D PRIMITIVE EQUATIONS IN A CUBE: THE ZERO-MODE

  • We establish the vanishing viscosity limit of the zero-mode of the linearized Primitive Equations in a cube. Our method is based on the explicit construction and estimates of the boundary layers. This result, together with that in[12,15], allows us to conclude the vanishing viscosity limit of the linearized Primitive Equations in a cube.
    MSC: 35Q35;35K51;76D10
  • 加载中
  • [1] C. Bandle and C. M. Brauner, Singular perturbation method in a parabolic problem with free boundary, in BAIL IV (Novosibirsk, 1986), 8 of Boole Press Conf. Ser., Boole, Dún Laoghaire, 1986, 7-14.

    Google Scholar

    [2] C. M. Brauner, Perturbations singulières dans des systèmes non linéaires et applications à la biochimie, U.E.R. Mathématique Université Paris XI Orsay, 1975, 148, 75-41.

    Google Scholar

    [3] C. M. Brauner, W. Eckhaus, M. Garbey and A. Van Harten, A nonlinear, singular perturbation problem with some unusual features, in Nonlinear systems of partial differential equations in applied mathematics, Part 2(Santa Fe, N.M., 1984), 23 of Lectures in Appl. Math., 1984, 275-310.

    Google Scholar

    [4] C. M. Brauner and B. Nicolaenko, Transition layers, angular limiting solutions and internal layers in singularly perturbed nonlinear eigenvalue problems, Springer Vienna, 1983, 15(5), 269-308.

    Google Scholar

    [5] Q. Chen, M. C. Shiue and R. Temam, The barotropic mode for the primitive equations, J. Sci. Comput, 2010, 45, 167-199.

    Google Scholar

    [6] W. E, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sin. (Engl. Ser.), 2000, 16(2), 207-218.

    Google Scholar

    [7] M. Fei, D. Han and X. Wang, Initial-boundary layer associated with the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system, Phys. D, 2017, 338, 42-56.

    Google Scholar

Article Metrics

Article views(1165) PDF downloads(575) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint