2021 Volume 11 Issue 3
Article Contents

Changhong Guo, Shaomei Fang. CRANK-NICOLSON DIFFERENCE SCHEME FOR THE DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION WITH THE RIESZ SPACE FRACTIONAL DERIVATIVE[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1074-1094. doi: 10.11948/20180178
Citation: Changhong Guo, Shaomei Fang. CRANK-NICOLSON DIFFERENCE SCHEME FOR THE DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION WITH THE RIESZ SPACE FRACTIONAL DERIVATIVE[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1074-1094. doi: 10.11948/20180178

CRANK-NICOLSON DIFFERENCE SCHEME FOR THE DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION WITH THE RIESZ SPACE FRACTIONAL DERIVATIVE

  • Corresponding author: Email address: fangsm90@163.com(S. Fang)
  • Fund Project: This research was supported by the National Natural Science Foundation of China(No. 71974038), China Scholarship Council(No. 201708440509), and Natural Science Foundation of Guangdong Province, China(No. 2017A030310564)
  • This paper studied the Crank-Nicolson(CN) difference scheme for the derivative nonlinear Schrödinger equation with the Riesz space fractional derivative, which generalized the classical Schrödinger equation that was used as a model in quantum mechanics. The existence of this difference solution is proved by the Brouwer fixed point theorem. Since the difference solution of the equation satisfies the mass conservation law, the corresponding convergence is also investigated in the $ L_2 $ norm, which turns out to be the second order accuracy in both temporal and space directions. Especially when the fractional order equals to two, all those results are in accordance with the conclusions for the difference solution developed for the non-fractional derivative Schrödinger equation. Finally, some numerical examples are carried out and further verified the theoretical results.

    MSC: 35Q55, 65R10, 47B06
  • 加载中
  • [1] G. D. Akrivis, Finite difference discretization of the cubic Schrödinger equation, IMA J. Numer. Anal., 1993, 13(1), 115-124. doi: 10.1093/imanum/13.1.115

    CrossRef Google Scholar

    [2] A. H. Bhrawy and M. A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations, J. Comput. Phys., 2015, 294, 462-483. doi: 10.1016/j.jcp.2015.03.063

    CrossRef Google Scholar

    [3] C. Çelik and M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 2012, 231(4), 1743-1750. doi: 10.1016/j.jcp.2011.11.008

    CrossRef Google Scholar

    [4] A. Dur$\acute{ a }$n and J. M. Sanz-Serna, The numerical integration of relative solutions. The nonlinear Schrödinger equation, IMA J. Numer. Anal., 2000, 20(2), 235-261. doi: 10.1093/imanum/20.2.235

    CrossRef Google Scholar

    [5] R. P. Feynman and A. R. Hibbs, Quantum mechanics and path integrals, McGraw-Hill, New York, 1965.

    Google Scholar

    [6] R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb R$, Acta Math., 2013, 210(2), 261-318. doi: 10.1007/s11511-013-0095-9

    CrossRef Google Scholar

    [7] B. Guo, Y. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. Comput., 2008, 204(1), 468-477.

    Google Scholar

    [8] B. Guo, X. Pu and F. Huang, Fractional partial differential equations and their numerical solutions, Beijing Science Press, 2015.

    Google Scholar

    [9] B. Guo, The convergence of numerical method for nonlinear Schrödinger equations, J. Comput. Math., 1986, 4(2), 121-130.

    Google Scholar

    [10] Z. Guo and Y. Wu, Global well-posedness for the derivative nonlinear Schrödinger equation in $H^ \frac{1}{2}(\mathbb R)$, Disc. Cont. Dyn. Sys., 2017, 37(1), 257-264. doi: 10.3934/dcds.2017010

    CrossRef Google Scholar

    [11] M. Hayashi and T. Ozawa, Well-posedness for a generalized derivative nonlinear Schrödinger equation, J. Diff. Eqs., 2016, 261(10), 5424-5445. doi: 10.1016/j.jde.2016.08.018

    CrossRef Google Scholar

    [12] S. Herr, On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not., 2006, 96763, 1-33.

    Google Scholar

    [13] M. Ilic, F. Liu, I. Turner and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, I., Fract. Calc. Appl. Anal., 2005, 8(3), 323-341.

    Google Scholar

    [14] M. S. Ismail and T. R. Taha, Numerical simulation of coupled nonlinear Schrödinger equation, Math. Comput. Simul., 2001, 56(6), 547-562. doi: 10.1016/S0378-4754(01)00324-X

    CrossRef Google Scholar

    [15] D. J. Kaup and A. C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 1978, 19(4), 798-801. doi: 10.1063/1.523737

    CrossRef Google Scholar

    [16] N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 2000, 62(3), 3135-3145. doi: 10.1103/PhysRevE.62.3135

    CrossRef Google Scholar

    [17] N. Laskin, Fractional quantum mechanics and L$\acute{ e }$vy path integrals, Phys. Lett. A, 2000, 268(4-6), 298-305. doi: 10.1016/S0375-9601(00)00201-2

    CrossRef Google Scholar

    [18] M. Li, C. Huang and P. Wang, Galerkin finite element method for nonlinear fractional Schrödinger equations, Numer. Algor., 2017, 74(2), 499-525. doi: 10.1007/s11075-016-0160-5

    CrossRef Google Scholar

    [19] K. Mio, T. Ogino, K. Minami and S. Takeda, Modified nonlinear Schrödinger equation for Alfv$\acute{ e }$n waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Jpn., 1976, 41(1), 265-271. doi: 10.1143/JPSJ.41.265

    CrossRef Google Scholar

    [20] E. Mj${\rm{\not o}}$lhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys., 1976, 16(3), 321-334. doi: 10.1017/S0022377800020249

    CrossRef Google Scholar

    [21] R. Mosincat, Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in $H^\frac{1}{2}$, J. Diff. Eqs., 2017, 263(8), 4658-4722. doi: 10.1016/j.jde.2017.05.026

    CrossRef Google Scholar

    [22] M. D. Ortigueira, Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci., 2006, 48391, 1-12.

    Google Scholar

    [23] K. M. Owolabi and A. Atangana, Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, Eur. Phys. J. Plus, 2016, 131(9), 335. doi: 10.1140/epjp/i2016-16335-8

    CrossRef Google Scholar

    [24] A. Rogister, Parallel propagation of nonlinear low-frequency waves in high-$\beta$ plasma, Phys. Fluids, 1971, 14(12), 2733-2739. doi: 10.1063/1.1693399

    CrossRef Google Scholar

    [25] A. I. Saichev and G. M. Zaslavsky, Fractional kinetic equations: solutions and applications, Chaos, 1997, 7(4), 753-764. doi: 10.1063/1.166272

    CrossRef Google Scholar

    [26] S. Samko, A. A. Kilbas and O. I. Marichev, Fractional integrals and derivatives: theory and applications, Transl. from the Russian. New York, Gordon and Breach, 1993.

    Google Scholar

    [27] Z. Sun and D. Zhao, On the $L_\infty$ convergence of a difference scheme for coupled nonlinear Schrödinger equations, Comput. Math. Appl., 2010, 59(10), 3286-3300. doi: 10.1016/j.camwa.2010.03.012

    CrossRef Google Scholar

    [28] M. Tsutsumi and I. Fukuda, On solutions of the derivative nonlinear Schrödinger equation: existence and uniqueness theorems, Funkcial. Ekvac., 1980, 23(3), 259-277.

    Google Scholar

    [29] D. Wang, A. Xiao and W. Yang, Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, J. Comput. Phys., 2013, 242(6), 670-681.

    Google Scholar

    [30] D. Wang, A. Xiao and W. Yang, A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys., 2014, 272, 644-655. doi: 10.1016/j.jcp.2014.04.047

    CrossRef Google Scholar

    [31] D. Wang, A. Xiao and W. Yang, Maximum-norm error analysis of a difference scheme for the space fractional CNLS, Appl. Math. Comput., 2015, 257, 241-251.

    Google Scholar

    [32] T. Wang, T. Nie and L. Zhang, Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system, J. Comput. Appl. Math., 2009, 231(2), 745-759. doi: 10.1016/j.cam.2009.04.022

    CrossRef Google Scholar

    [33] T. Wang, B. Guo and L. Zhang, New conservative difference schemes for a coupled nonlinear Schrödinger system, Appl. Math. Comput., 2010, 217(4), 1604-1619.

    Google Scholar

    [34] P. Wang and C. Huang, An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys., 2015, 293, 238-251. doi: 10.1016/j.jcp.2014.03.037

    CrossRef Google Scholar

    [35] P. Wang and C. Huang, A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation, Numer. Algor., 2015, 69(3), 625-641. doi: 10.1007/s11075-014-9917-x

    CrossRef Google Scholar

    [36] P. Wang, C. Huang and L. Zhao, Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation, J. Comput. Appl. Math., 2016, 306, 231-247. doi: 10.1016/j.cam.2016.04.017

    CrossRef Google Scholar

    [37] Q. Yang, F. Liu and I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 2010, 34(1), 200-218. doi: 10.1016/j.apm.2009.04.006

    CrossRef Google Scholar

    [38] H. Zhang, F. Liu and V. Anh, Galerkin finite element approximations of symmetric space-fractional partial differential equations, Appl. Math. Comput., 2010, 217(6), 2534-2545.

    Google Scholar

    [39] H. Zhang, X. Jiang, C. Wang and S. Chen, Crank-Nicolson Fourier spectral methods for the space fractional nonlinear Schrödinger equation and its parameter estimation, Int. J. Comput. Math., 2019, 96(2), 238-263. doi: 10.1080/00207160.2018.1434515

    CrossRef Google Scholar

    [40] Q. Zhang, X. Liu and M. R. Belić, et al., Propagation dynamics of a light beam in a fractional Schrödinger equation, Phys. Rev. Lett., 2015, 115, 180403. doi: 10.1103/PhysRevLett.115.180403

    CrossRef Google Scholar

    [41] R. Zhang, Y. Zhang and Z. Wang, et al., A conservative numerical method for the fractional nonlinear Schrödinger equation in two dimensions, Sci. Sin. Math., 2019, 62(10), 1997-2014.

    Google Scholar

    [42] X. Zhao, Z. Sun and Z. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput., 2014, 36(6), A2865-A2886. doi: 10.1137/140961560

    CrossRef Google Scholar

    [43] Y. Zhou, Application of discrete functional analysis to the finite difference methods, International Academic Publishers, Beijing, 1990.

    Google Scholar

Figures(5)  /  Tables(3)

Article Metrics

Article views(2728) PDF downloads(404) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint