2021 Volume 11 Issue 1
Article Contents

Asim Zafar, Ahmet Bekir. EXPLORING THE CONFORMABLE TIME-FRACTIONAL (3 + 1)-DIMENSIONAL MODIFIED KORTEWEG-DEVRIESZAKHAROV- KUZNETSOV EQUATION VIA THREE INTEGRATION SCHEMES[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 161-175. doi: 10.11948/20190205
Citation: Asim Zafar, Ahmet Bekir. EXPLORING THE CONFORMABLE TIME-FRACTIONAL (3 + 1)-DIMENSIONAL MODIFIED KORTEWEG-DEVRIESZAKHAROV- KUZNETSOV EQUATION VIA THREE INTEGRATION SCHEMES[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 161-175. doi: 10.11948/20190205

EXPLORING THE CONFORMABLE TIME-FRACTIONAL (3 + 1)-DIMENSIONAL MODIFIED KORTEWEG-DEVRIESZAKHAROV- KUZNETSOV EQUATION VIA THREE INTEGRATION SCHEMES

  • In this paper, the nonlinear conformable time-fractional (3 + 1)- dimensional modified KdV-Zakharov-Kuznetsov equation is being explored using three well-established integration schemes named as: the expζ function method, the hyperbolic function and modified Kudryashov schemes. In returns, many new exact solitary wave solutions, including rational, dark, singular and combined dark-singular solitons, are obtained and have been compared with those given in the literature. Moreover, the obtained solutions are demonstrated by 2D and 3D graphs for suitable values of the parameters to observe the dynamical behavior of the secured solutions.
    MSC: 35Q51, 35Q53, 37K40
  • 加载中
  • [1] M. J. Ablowitz and H. Segur, Solitons and the inverse scattering transform, 4, Siam, 1981.

    Google Scholar

    [2] A. T. Ali and E. R. Hassan, General expa function method for nonlinear evolution equations, Appl. Math. Comput., 2010, 217, 451-459.

    Google Scholar

    [3] Z. Ayati, K. Hosseini and M. Mirzazadeh, Application of kudryashov and functional variable methods to the strain wave equation in microstructured solids, Nonlinear Engineering, 2017, 6, 25-29.

    Google Scholar

    [4] C. Bai, Exact solutions for nonlinear partial differential equation: anewapproach, Physics Letters A, 2001, 288(3), 191-195.

    Google Scholar

    [5] A. Bekir, Application of the extended tanh method for coupled nonlinear evolution equation, Commun. Nonlinear Sci., 2008, 13, 1742-1751.

    Google Scholar

    [6] A. Bekir, C. C. Adem, O. Güner and S. San, Bright and dark soliton solutions of the (2+1)-dimenssional evolution equation, Mathematical Modelling and Analysis, 2014, 19, 118-126. doi: 10.3846/13926292.2014.893456

    CrossRef Google Scholar

    [7] A. Biswas, Solitary wave solution for the generalized kdv equation with timedependent damping and dispersion, Communications in Nonlinear Science and Numerical Simulation, 2009, 14(9), 3503-3506.

    Google Scholar

    [8] A. Biswas, Y. Yildirim, E. Yaser et al., Optical soliton perturbation with full nonlinearity by trial equation method, Optik, 2018, 157, 1366-1375. doi: 10.1016/j.ijleo.2017.12.113

    CrossRef Google Scholar

    [9] A. Biswas and E. Zerrad, 1-soliton solution of the zakharovkuznetsov equation with dual-power law nonlinearity, Communications in Nonlinear Science and Numerical Simulation, 2009, 14(9), 3574-3577.

    Google Scholar

    [10] A. Biswas and E. Zerrad, Solitary wave solution of the zakharovkuznetsov equation in plasmas with power law nonlinearity, Nonlinear Analysis: Real World Applications, 2010, 11(4), 3272-3274. doi: 10.1016/j.nonrwa.2009.08.007

    CrossRef Google Scholar

    [11] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in fractional differentiation and applications, 2015, 1(2), 73-85.

    Google Scholar

    [12] W. Chung, Fractional newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., 2015, 209, 150-158.

    Google Scholar

    [13] B. Ghanbari, M. S. Osman and D. Baleanu, Generalized exponential rational function method for extended zakharovkuzetsov equation with conformable derivative, Modern Physics Letters A, 2019, 34(20), 1950155. doi: 10.1142/S0217732319501554

    CrossRef Google Scholar

    [14] K. Hosseini, Z. Ayati and R. Ansari, New exact solution of the tzitzéica type equations in nonlinear optics using the expa function method, J. Mod. Opt., 2018, 65(7), 847-851. doi: 10.1080/09500340.2017.1407002

    CrossRef Google Scholar

    [15] K. Hosseini, J. Manafian, F. Samadani et al., Resonant optical solitons with perturbation terms and fractional temporal evolution using improved tan(φ(η)=2)- expansion method and exp function approach, Optik, 2018, 158, 933-939. doi: 10.1016/j.ijleo.2017.12.139

    CrossRef Google Scholar

    [16] K. Hosseini, P. Mayeli and D. Kumar, New exact solutions of the coupled sinegordon equations in nonlinear optics using the modified kudryashov method, Journal of Modern Optics, 2018, 65(3), 361-364. doi: 10.1080/09500340.2017.1380857

    CrossRef Google Scholar

    [17] M. H. Islam, K. Khan, M. A. Akbar and M. A. Salam, Exact traveling wave solutions of modified kdv-zakharov-kuznetsov equation and viscous burgers equation, SpringerPlus, 2014, 3(1), 105. doi: 10.1186/2193-1801-3-105

    CrossRef Google Scholar

    [18] A. Javid, N. Raza and M. S. Osman, Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets, Communications in Theoretical Physics, 2019, 71(4), 362. doi: 10.1088/0253-6102/71/4/362

    CrossRef Google Scholar

    [19] T. A. jawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics, 2015, 279, 57-66. doi: 10.1016/j.cam.2014.10.016

    CrossRef Google Scholar

    [20] X. T. Jin, Q. and J. Wang, The exact solution of the space-time fractional modified kdv-zakharov-kuznetsov equation, Journal of applied mathematics and physics, 2017, 5, 844-852. doi: 10.4236/jamp.2017.54074

    CrossRef Google Scholar

    [21] G. Jumarie, Modified riemann-liouville derivative and fractional taylor series of nondifferentiable functions further results, Computers & Mathematics with Applications, 2006, 51(9-10), 1367-1376.

    Google Scholar

    [22] B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly dispersing media, in Sov. Phys. Dokl, 15, 1970, 539-541.

    Google Scholar

    [23] R. Khalil, M. A. Horani, A. Yousef and M. Sababheh, A new defination of fractional derivative, J. Comput. Appl. Math., 2014, 264, 65-70. doi: 10.1016/j.cam.2014.01.002

    CrossRef Google Scholar

    [24] D. J. Korteweg and G. de Vries, Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895, 39(240), 422-443. doi: 10.1080/14786449508620739

    CrossRef Google Scholar

    [25] D. Kumar, K. Hosseini and F. Samadani, The sine- gordon expansion method to look for the traveling wave solutions of the tzitzica type equations in nonlinear optics, Optik - International Journal for Light and Electron Optics, 2017, 149, 439-446. doi: 10.1016/j.ijleo.2017.09.066

    CrossRef Google Scholar

    [26] J. G. Liu, M. S. Osman, W. H. Zhu et al., Different complex wave structures described by the hirota equation with variable coefficients in inhomogeneous optical fibers, Applied Physics B, 2019, 125(9), 175. doi: 10.1007/s00340-019-7287-8

    CrossRef Google Scholar

    [27] D. Lu, M. Osman, M. M. A. Khater et al., Analytical and numerical simulations for the kinetics of phase separation in iron (fecrx (x=mo, cu)) based on ternary alloys, Physica A: Statistical Mechanics and its Applications, 2020, 537, 122634. doi: 10.1016/j.physa.2019.122634

    CrossRef Google Scholar

    [28] J. Manafian, M. F. Aghdaei, M. Khalilian and R. S. Jeddi, Application of the generalized (G 0 G)-expansion method for nonlinear pdes to obtaining soliton wave solution, Optik-International Journal for Light and Electron Optics, 2017, 135, 395-406. doi: 10.1016/j.ijleo.2017.01.078

    CrossRef Google Scholar

    [29] H. Naher, F. A. Abdullah and M. A. Akbar, Generalized and improved (G 0 G)- expansion method for (3 + 1)-dimensional modified kdv-zakharov-kuznetsev equation, PloS one, 2013, 8(5), e64618. doi: 10.1371/journal.pone.0064618

    CrossRef Google Scholar

    [30] K. Ohkuma and M. Wadati, The kadomtsev-petviashvili equation: the trace method and the soliton resonances, Journal of the Physical Society of Japan, 1983, 52(3), 749-760. doi: 10.1143/JPSJ.52.749

    CrossRef Google Scholar

    [31] M. Osman, L. Dianchen and M. A. K. Mostafa, A study of optical wave propagation in the nonautonomous schrdinger-hirota equation with power-law nonlinearity, Results in Physics, 2019, 13, 102157. doi: 10.1016/j.rinp.2019.102157

    CrossRef Google Scholar

    [32] M. Osman, D. Lu, M. M. A. Khater and R. A. M. Attia, Complex wave structures for abundant solutions related to the complex ginzburglandau model, Optik, 2019, 192, 162927. doi: 10.1016/j.ijleo.2019.06.027

    CrossRef Google Scholar

    [33] M. S. Osman, Nonlinear interaction of solitary waves described by multirational wave solutions of the (2+1)-dimensional kadomtsevpetviashvili equation with variable coefficients, Nonlinear Dynamics, 2017, 87(2), 1209-1216. doi: 10.1007/s11071-016-3110-9

    CrossRef Google Scholar

    [34] M. S. Osman, New analytical study of water waves described by coupled fractional variant boussinesq equation in fluid dynamics, Pramana, 2019, 93(2), 26. doi: 10.1007/s12043-019-1785-4

    CrossRef Google Scholar

    [35] M. S. Osman, One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient sawadakotera equation, Nonlinear Dynamics, 2019, 96(2), 14911496.

    Google Scholar

    [36] M. S. Osman, H. Rezazadeh and M. Eslami, Traveling wave solutions for (3+1) dimensional conformable fractional zakharov-kuznetsov equation with power law nonlinearity, Nonlinear Engineering, 2019, 8(1), 559-567. doi: 10.1515/nleng-2018-0163

    CrossRef Google Scholar

    [37] M. S. Osman and A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a (3+ 1)dimensional boitileonmannapempinelli equation, Mathematical Methods in the Applied Sciences, 2019, 42(18).

    Google Scholar

    [38] S. Sahoo and S. R. Saha, Solitary wave solutions for time fractional third order modified kdv equation using two reliable techniques (G 0 G)-expansion method and improved (G 0 G)-expansion method, Physica A, 2016, 448, 265-282. doi: 10.1016/j.physa.2015.12.072

    CrossRef Google Scholar

    [39] G. Samko, A. A. Kilbas and Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.

    Google Scholar

    [40] H. Schamel, A modified korteweg-de vries equation for ion acoustic wavess due to resonant electrons, Journal of Plasma Physics, 1973, 9(3), 377-387. doi: 10.1017/S002237780000756X

    CrossRef Google Scholar

    [41] A. R. Seadawy, D. Kumar, K. Hosseini and F. Samadani, The system of equations for the ion sound and langmuir waves and its new exact solutions, Results in Physics, 2018, 9, 1631-1634. doi: 10.1016/j.rinp.2018.04.064

    CrossRef Google Scholar

    [42] M. Wadati, The modified korteweg-de vries equation, Journal of the Physical Society of Japan, 1973, 34(5), 1289-1296. doi: 10.1143/JPSJ.34.1289

    CrossRef Google Scholar

    [43] A. Wazwaz, The extended tanh method for the zakharov-kuznestsov(zk) equation, the modified zk equation, and its generalized forms, Commun. Nonlinear Sci., 2008, 13, 1039-1047. doi: 10.1016/j.cnsns.2006.10.007

    CrossRef Google Scholar

    [44] A. M. Wazwaz, Exact soliton and kink solutions for new (3+ 1)-dimensional nonlinear modified equations of wave propagation, Open Engineering, 7(1), 169-174. doi: 10.1515/eng-2017-0023

    CrossRef Google Scholar

    [45] A. M. Wazwaz, A computational approach to soliton solutions of the kadomtsev-petviashvili equation, Applied Mathematics and Computation, 2001, 123(2), 205-217. doi: 10.1016/S0096-3003(00)00065-5

    CrossRef Google Scholar

    [46] A. M. Wazwaz, New sets of solitary wave solutions to the kdv, mkdv, and the generalized kdv equations, Communications in Nonlinear Science and Numerical Simulation, 2008, 13(2), 331-339. doi: 10.1016/j.cnsns.2006.03.013

    CrossRef Google Scholar

    [47] F. Xie, Z. Yan and H. Zhang, Explicit and exact traveling wave solutions of whithambroerkaup shallow water equations, Physics Letters A, 2001, 285(1), 76-80.

    Google Scholar

    [48] Z. Yan and H. Zhang, New explicit solitary wave solutions and periodic wave solutions for whithambroerkaup equation in shallow water, Physics Letters A, 2001, 285(5), 355-362.

    Google Scholar

    [49] A. Zafar, Rational exponential solutions of conformable space-time fractional equal-width equations, Nonlinear Engineering, 2019, 8(1), 350-355. doi: 10.1515/nleng-2018-0076

    CrossRef Google Scholar

    [50] A. Zafar and A. R. Seadawy, The conformable space-time fractional mkdv equations and their exact solutions, Journal of King Saud University - Science, 2019, 31(4), 1478-1484. doi: 10.1016/j.jksus.2019.09.003

    CrossRef Google Scholar

    [51] E. Zayed and S. Ibrahim, Exact solutions of nonlinear evolution equations in mathematical physics using the modified simple equation method, Chinese physics Letters, 2012, 29(6), 060201. doi: 10.1088/0256-307X/29/6/060201

    CrossRef Google Scholar

Figures(12)

Article Metrics

Article views(2269) PDF downloads(315) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint