2020 Volume 10 Issue 3
Article Contents

Xiaoyu Jiang, Yang Yu, Fanwei Meng, Yancong Xu. MODELLING THE DYNAMICS OF AVIAN INFLUENZA WITH NONLINEAR RECOVERY RATE AND PSYCHOLOGICAL EFFECT[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 1170-1192. doi: 10.11948/20190253
Citation: Xiaoyu Jiang, Yang Yu, Fanwei Meng, Yancong Xu. MODELLING THE DYNAMICS OF AVIAN INFLUENZA WITH NONLINEAR RECOVERY RATE AND PSYCHOLOGICAL EFFECT[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 1170-1192. doi: 10.11948/20190253

MODELLING THE DYNAMICS OF AVIAN INFLUENZA WITH NONLINEAR RECOVERY RATE AND PSYCHOLOGICAL EFFECT

  • Corresponding author: mail address:yancongx@163.com(Y. Xu)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 11671114, 11671227) and National Science Foundation of Zhejiang Province (No. LY20A010002)
  • In this paper, a SI-SEIR type avian influenza epidemic model with psychological effect, nonlinear recovery rate and saturation inhibition effect is formulated to study the transmission and control of avian influenza virus. By setting the basic reproductive number as the threshold parameter and constructing Lyapunov function, Dulac function and using the Li-Muldowney's geometry approach, we prove the local and global stability of disease-free equilibria and endemic equilibrium. Theoretical analysis are carried out to show the role of the saturation inhibition effect, psychological effect and effective medical resources in this model, and numerical simulations are also given to verify the results.
    MSC: 35K57, 37L15
  • 加载中
  • [1] R. M. Anderson, B. Anderson, R. M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, 1992.

    Google Scholar

    [2] T. Y. Aditama, G. Samaan, R. Kusriastuti, et al., Avian influenza H5N1 transmission in households, Indonesia, PloS One, 2012, 7(1), e29971. doi: 10.1371/journal.pone.0029971

    CrossRef Google Scholar

    [3] A. Abdelrazec, J. Belair, C. Shan, et al., Modeling the spread and control of dengue with limited public health resources, Mathematical Biosciences, 2016,271,136-145. doi: 10.1016/j.mbs.2015.11.004

    CrossRef Google Scholar

    [4] C. T. Bauch, A. P. Galvani, Social factors in epidemiology, Science, 2013,342(6154), 47-49. doi: 10.1126/science.1244492

    CrossRef Google Scholar

    [5] Y. Chen, Y. Wen, Global dynamic analysis of a H7N9 avian-human influenza model in an outbreak region, Journal of Theoretical Biology, 2015,367,180-188. doi: 10.1016/j.jtbi.2014.12.002

    CrossRef Google Scholar

    [6] V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 1978, 42(1-2), 43-61.

    Google Scholar

    [7] Centers for Disease Control and Prevention (CDC), Bird Flu Basics, https://www.cdc.gov/flu/avianflu/bird-flu-basics.htm.

    Google Scholar

    [8] Centers for Disease Control and Prevention (CDC), Influenza Type A Viruses, http://www.cdc.gov/flu/avianflu/influenza-avirus-subtypes.htm.

    Google Scholar

    [9] C. Castillo-Chavez, et al., Mathematical approaches for emerging and reemerging infectious diseases: an introduction, Springer Science & Business Media, 2002.

    Google Scholar

    [10] O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, Journal of the Royal Society Interface, 2009, 7(47), 873-885.

    Google Scholar

    [11] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 2002,180(1-2), 29-48.

    Google Scholar

    [12] I. ElMasry, H. Elshiekh, A. Abdlenabi, et al., Avian influenza H5N1 surveillance and its dynamics in poultry in live bird markets, Egypt, Transboundary and emerging diseases, 2017, 64(3), 805-814. doi: 10.1111/tbed.12440

    CrossRef Google Scholar

    [13] S. Funk, E. Gilad, C. Watkins, et al., The spread of awareness and its impact on epidemic outbreaks, Proceedings of the National Academy of Sciences, 2009,106(16), 6872-6877. doi: 10.1073/pnas.0810762106

    CrossRef Google Scholar

    [14] S. Funk, M. SalathšŠ, V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: a review, Journal of the Royal Society Interface, 2010, 7(50), 1247-1256. doi: 10.1098/rsif.2010.0142

    CrossRef Google Scholar

    [15] S. Funk, S. Bansal, C. T. Bauch, et al., Nine challenges in incorporating the dynamics of behaviour in infectious diseases models, Epidemics, 2015, 10, 21-25. doi: 10.1016/j.epidem.2014.09.005

    CrossRef Google Scholar

    [16] H. I. Freedman, S. Ruan, M. Tang, Uniform persistence and flows near a closed positively invariant set, Journal of Dynamics and Differential Equations, 1994, 6(4), 583-600.

    Google Scholar

    [17] D. J. Gubler, Dengue and dengue hemorrhagic fever, Clinical microbiology reviews, 1998, 11(3), 480-496.

    Google Scholar

    [18] S. Iwami, Y. Takeuchi, X. Liu, Avian Chuman influenza epidemic model, Mathematical Biosciences, 2007,207(1), 1-25.

    Google Scholar

    [19] M. J. Keeling, P. Rohani, Modeling infectious diseases in humans and animals, Princeton University Press, 2011.

    Google Scholar

    [20] M. A. Khan, M. Farhan, S. Islam, et al., Modeling the transmission dynamics of avian influenza with saturation and psychological effect, Discrete & Continuous Dynamical Systems-S, 2019, 12(3), 455-474.

    Google Scholar

    [21] S. Liu, L. Pang, S. Ruan, et al., Global dynamics of avian influenza epidemic models with psychological effect, Computational and mathematical methods in medicine, 2015, 1-12.

    Google Scholar

    [22] W. Liu, S. A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, Journal of Mathematical Biology, 1986, 23(2), 187-204.

    Google Scholar

    [23] S. Liu, S. Ruan, X. Zhang, Nonlinear dynamics of avian influenza epidemic models, Mathematical biosciences, 2017,283,118-135. doi: 10.1016/j.mbs.2016.11.014

    CrossRef Google Scholar

    [24] M. Y. Li, J. S. Muldowney, A geometric approach to global-stability problems, SIAM Journal on Mathematical Analysis, 1996, 27(4), 1070-1083.

    Google Scholar

    [25] M. Y. Li, J. R. Graef, L. Wang, et al., Global dynamics of a SEIR model with varying total population size, Mathematical Biosciences, 1999,160(2), 191-213.

    Google Scholar

    [26] J. Lucchetti, M. Roy, M. Martcheva, An avian influenza model and its fit to human avian influenza cases, Advances in Disease Epidemiology, 2009, 1-30.

    Google Scholar

    [27] R. Mu, Y. Yang, Global dynamics of an avian influenza A (H7N9) epidemic model with latent period and nonlinear recovery rate, Computational and mathematical methods in medicine, 2018, 1-11.

    Google Scholar

    [28] J. R. H. Martin, Logarithmic norms and projections applied to linear differential systems, Journal of Mathematical Analysis and Applications, 1974, 45(2), . 432-454.

    Google Scholar

    [29] L. Perko, Differential Equations and Dynamical Systems, Springer, 2001.

    Google Scholar

    [30] A. S. R. S. Rao, Modeling the rapid spread of avian influenza (H5N1) in India, Mathematical Biosciences & Engineering, 2008, 5(3), 523-537.

    Google Scholar

    [31] S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, Journal of Differential Equations, 2003,188(1), 135-163.

    Google Scholar

    [32] C. Shan, H. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds, Journal of Differential Equations, 2014,257(5), 1662-1688. doi: 10.1016/j.jde.2014.05.030

    CrossRef Google Scholar

    [33] N. Tuncer, M. Martcheva, Modeling seasonality in avian influenza H5N1, Journal of Biological Systems, 2013, 21(04), 1-30.

    Google Scholar

    [34] L. Wang, B. J. Cowling, P. Wu, et al., Human exposure to live poultry and psychological and behavioral responses to influenza A (H7N9), China, Emerging infectious diseases, 2014, 20(8), 1296-1305.

    Google Scholar

    [35] P. Wu, L. Wang, B. J. Cowling, et al., Live poultry exposure and public response to influenza A(H7N9) in urban and rural China during two epidemic waves in 2013-2014, PLoS One, 2015, 10.

    Google Scholar

    [36] Y. Xiao, X. Sun, S. Tang, et al., Transmission potential of the novel avian influenza A (H7N9) infection in mainland China, Journal of Theoretical Biology, 2014,352, 1-5. doi: 10.1016/j.jtbi.2014.02.038

    CrossRef Google Scholar

    [37] N. Xiang, Y. Shi, J. Wu, et al., Knowledge, attitudes and practices (KAP) relating to avian influenza in urban and rural areas of China, BMC Infectious Diseases, 2010, 10(1), 34.

    Google Scholar

    [38] F. Zhang, X. Zhang, The threshold of a stochastic avian-human influenza epidemic model with psychological effect, Physica A, 2018,492,485-495. doi: 10.1016/j.physa.2017.10.043

    CrossRef Google Scholar

Figures(5)  /  Tables(1)

Article Metrics

Article views(2076) PDF downloads(378) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint