2021 Volume 11 Issue 1
Article Contents

Liqian Jia, Guanwei Chen. Non-periodic discrete Schrödinger equations with sign-changing and super-quadratic terms: Existence of solutions[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 242-253. doi: 10.11948/20190326
Citation: Liqian Jia, Guanwei Chen. Non-periodic discrete Schrödinger equations with sign-changing and super-quadratic terms: Existence of solutions[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 242-253. doi: 10.11948/20190326

Non-periodic discrete Schrödinger equations with sign-changing and super-quadratic terms: Existence of solutions

  • Corresponding author: Email address: guanweic@163.com(G. Chen)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11771182) and Natural Science Foundation of Shandong Province (No. ZR2017JL005)
  • We study the existence of homoclinic solutions for a class of non-periodic discrete nonlinear Schrödinger equations, where nonlinearities are super-linear at infinity, and primitive functions of nonlinearities are allowed to be sign-changing. By using some weaker conditions, our result extends and improves some results in the literature. Besides, we also give examples to illuminate our results.
    MSC: 35Q51, 35Q55, 39A12, 39A70
  • 加载中
  • [1] G. Chen and S. Ma,Discrete nonlinear Schrödinger equations with superlinear nonlinearities, Appl. Math. Comput., 2012, 218: 5496–5507.

    Google Scholar

    [2] G. Chen and S. Ma ,Ground state and geometrically distinct solitons of discrete nonlinear Schrödinger equations with saturable nonlinearities, Stud. Appl. Math., 2013, 131: 389–413. doi: 10.1111/sapm.12016

    CrossRef Google Scholar

    [3] G. Chen and S. Ma ,Homoclinic solutions of discrete nonlinear Schrödinger equations with asymptotically or super linear terms, Appl. Math. Comput., 2014, 232: 787–798.

    Google Scholar

    [4] G. Chen and M. Schechter ,Non-periodic discrete Schrödinger equations: ground state solutions, Z. Angew. Math. Phys., 2016, 67: 1–15. doi: 10.1007/s00033-015-0604-0

    CrossRef Google Scholar

    [5] G. Chen , S. Ma and Z. Wang ,Standing waves for discrete Schrödinger equations in infinite lattices with saturable nonlinearities, J. Differ. Equ., 2016, 261: 3493–3518. doi: 10.1016/j.jde.2016.05.030

    CrossRef Google Scholar

    [6] G. Chen and M. Schechter ,Non-periodic Schrödinger lattice systems with perturbed and asymptotically linear terms, Negative energy solutions. Appl. Math. Lett., 2019, 93: 34–39. doi: 10.1016/j.aml.2019.01.033

    CrossRef Google Scholar

    [7] G. Chen and S. Ma ,Perturbed Schrödinger lattice systems: Existence of homoclinic solutions, Proc. Roy. Soc. Edinburgh Sect. A, 2019, 149(4): 1083–1096. doi: 10.1017/prm.2018.106

    CrossRef Google Scholar

    [8] D. N. Christodoulides , F. Lederer and Y. Silberberg ,Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature, 2003, 424: 817–823. doi: 10.1038/nature01936

    CrossRef Google Scholar

    [9] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer Berlin, 1990, 19.

    Google Scholar

    [10] L. Erbe, B. Jia and Q. Zhang, Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl. Anal. Comput., 2019, 9: 271–294.

    Google Scholar

    [11] L. Jia and G. Chen,Discrete Schrödinger equations with sign-changing nonlinearities: Infinitely many homoclinic solutions, J. Math. Anal. Appl., 2017, 452: 568–577. doi: 10.1016/j.jmaa.2017.03.022

    CrossRef Google Scholar

    [12] L. Jia, J. Chen and G. Chen,Discrete Schrödinger equations in the non-periodic and superlinear cases: Homoclinic solutions, Adv. Differ. Equ., 2017, 2017: 289. doi: 10.1186/s13662-017-1344-6

    CrossRef Google Scholar

    [13] G. Kopidakis, S. Aubry and G. P. Tsironis,Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 2001, 87: 175–196.

    Google Scholar

    [14] G. Lin and Z. Zhou, Homoclinic solutions in non-periodic discrete φ-Laplacian equations with mixed nonlinearities, Appl. Math. Lett., 2017, 64: 15–20. doi: 10.1016/j.aml.2016.08.001

    CrossRef Google Scholar

    [15] G. Lin and Z. Zhou,Homoclinic solutions of discrete φ-Laplacian equations with mixed nonlinearities, Commun. Pure Appl. Anal., 2018, 17(5): 1723–1747. doi: 10.3934/cpaa.2018082

    CrossRef Google Scholar

    [16] G. Lin, J. Yu and Z. Zhou,Homoclinic solutions of discrete nonlinear Schrödinger equations with partially sublinear nonlinearities Electron. J. Differ. Equ., 2019, 96: 1–14.

    Google Scholar

    [17] G. Lin, Z. Zhou and J. Yu,Ground state solutions of discrete asymptotically linear Schrödinger equations with bounded and non-periodic potentials, J. Dyn. Differ. Equ., 2020, 32: 527–555. doi: 10.1007/s10884-019-09743-4

    CrossRef Google Scholar

    [18] R. Livi, R. Franzosi and G. L. Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation, Phys. Rev. Lett., 2006, 97: 3633–3646.

    Google Scholar

    [19] D. Ma and Z. Zhou, Existence and multiplicity results of homoclinic solutions for the DNLS equations with unbounded potentials, Abst. Appl. Anal., 2012, 2012: 1102–1135.

    Google Scholar

    [20] A. Pankov, Gap solitons in periodic discrete nonlinear equations, Nonlinearity, 2006, 19: 27–40. doi: 10.1088/0951-7715/19/1/002

    CrossRef Google Scholar

    [21] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations. Ⅱ. A generalized Nehari manifold approach, Discrete Contin. Dyn. Syst., 2007, 19: 419–430. doi: 10.3934/dcds.2007.19.419

    CrossRef Google Scholar

    [22] A. Pankov and V. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. A, 2008, 464: 3219–3236. doi: 10.1098/rspa.2008.0255

    CrossRef Google Scholar

    [23] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities, J. Math. Anal. Appl., 2010, 371: 254–265. doi: 10.1016/j.jmaa.2010.05.041

    CrossRef Google Scholar

    [24] A. Pankov and G. Zhang,Standing wave solutions for discrete nonlinear Schrödinger equations with unbounded potentials and saturable nonlinearity, J. Math. Sci., 2011, 177: 71–82. doi: 10.1007/s10958-011-0448-x

    CrossRef Google Scholar

    [25] A. Pankov, Standing waves for discrete nonlinear Schrödinger equations: signchanging nonlinearities, Appl. Anal., 2013, 92: 308–317. doi: 10.1080/00036811.2011.609987

    CrossRef Google Scholar

    [26] H. Shi and H. Zhang, Existence of gap solitons in periodic discrete nonlinear Schrödinger equations, J. Math. Anal. Appl., 2010, 361: 411–419. doi: 10.1016/j.jmaa.2009.07.026

    CrossRef Google Scholar

    [27] H. Shi, Gap solitons in periodic discrete Schrödinger equations with nonlinearity, Acta Appl. Math., 2010, 109: 1065–1075. doi: 10.1007/s10440-008-9360-x

    CrossRef Google Scholar

    [28] G. Sun, On standing wave solutions for discrete nonlinear Schrödinger equations, Abst. Appl. Anal., 2013, 2013: 436919.

    Google Scholar

    [29] M. Willem, Minimax theorems, Birkhäuser, 1996, 24: 139–141.

    Google Scholar

    [30] M. Yang, W. Chen and Y. Ding, Solutions for discrete periodic Schrödinger equations with spectrum 0, Acta Appl. Math., 2010, 110: 1475–1488. doi: 10.1007/s10440-009-9521-6

    CrossRef Google Scholar

    [31] G. Zhang and A. Pankov, Standing waves of the discrete nonlinear Schrödinger equations with growing potentials, Commun. Math. Anal., 2008, 5: 38–49.

    Google Scholar

    [32] G. Zhang and F. Liu, Existence of breather solutions of the DNLS equations with unbounded potentials, Nonlinear Anal., 2009, 71: 786–792. doi: 10.1016/j.na.2008.11.071

    CrossRef Google Scholar

    [33] G. Zhang, Breather solutions of the discrete nonlinear Schrödinger equations with unbounded potentials, J. Math. Phys., 2009, 50: 013505. doi: 10.1063/1.3036182

    CrossRef Google Scholar

    [34] G. Zhang and A.Pankov, Standing wave solutions of the discrete non-linear Schrödinger equations with unbounded potentials, Ⅱ, Appl. Anal., 2010, 89: 1541–1557. doi: 10.1080/00036810902942234

    CrossRef Google Scholar

    [35] Z. Zhou, J. Yu and Y. Chen, On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity, Nonlinearity, 2010, 23: 1727–1740. doi: 10.1088/0951-7715/23/7/011

    CrossRef Google Scholar

    [36] Z. Zhou, J. Yu and Y.Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math., 2011, 54(1): 83–93. doi: 10.1007/s11425-010-4101-9

    CrossRef Google Scholar

    [37] Z. Zhou and J. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta Math. Sini.. English Series, 2013, 29(9): 1809–1822.

    Google Scholar

    [38] Z. Zhou and D. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 2015, 58: 781–790. doi: 10.1007/s11425-014-4883-2

    CrossRef Google Scholar

Article Metrics

Article views(2438) PDF downloads(257) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint