2021 Volume 11 Issue 5
Article Contents

Zhewen Chen, Ruimin Zhang, Jiang Li, Xiaohui Liu, Chunjin Wei. GLOBAL DYNAMICS OF DETERMINISTIC AND STOCHASTIC SIRS EPIDEMIC MODELS[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2211-2229. doi: 10.11948/20190387
Citation: Zhewen Chen, Ruimin Zhang, Jiang Li, Xiaohui Liu, Chunjin Wei. GLOBAL DYNAMICS OF DETERMINISTIC AND STOCHASTIC SIRS EPIDEMIC MODELS[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2211-2229. doi: 10.11948/20190387

GLOBAL DYNAMICS OF DETERMINISTIC AND STOCHASTIC SIRS EPIDEMIC MODELS

  • Corresponding authors: Email: 850257016@qq.com(X. Liu);  jmwcj@jmu.edu.cn(C. Wei)
  • Fund Project: The authors were supported by National Natural Sciences Foundation of China(22072057)
  • In this paper, we analyze the dynamic behavior of Heesterbeek et al. [12] obtained saturating contact rate applied to SIRS epidemic model. We define two threshold values, the deterministic basic reproduction number $ R_0 $ and the stochastic basic reproduction number $ R_0^s $, by comparing the value with one to determine the persistence and extinction of the disease. For deterministic model, if $ R_0<1 $, we show that the disease-free equilibrium is globally asymptotically stable; while if $ R_0>1 $, the system admits a unique endemic equilibrium which is locally asymptotically stable. For stochastic model, we also establish the threshold value $ R_0^s $ for disease persistence and extinction. Finally, some numerical simulations are presented to illustrate our theoretical results. Our results prove that large stochastic perturbation will lead to the extinction of diseases with probability one, revealing the significant influence of stochastic perturbation on diseases and the importance of incorporating stochastic perturbation into deterministic model.

  • 加载中
  • [1] Y. Cai and W. Wang, Fish-hook bifurcation branch in a spatial heterogeneous epidemic model with cross-diffusion, Nonlinear Anal. RWA., 2016, 30, 99-125. doi: 10.1016/j.nonrwa.2015.12.002

    CrossRef Google Scholar

    [2] Y. Cai, Y. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 2017, 305, 221-240.

    Google Scholar

    [3] S. Cai, Y. Cai and X. Mao, A stochastic differential equation SIS epidemic model with two independent Brownian motion, J. Math. Anal. Appl., 2019, 472, 1536-1550.

    Google Scholar

    [4] B. Cao, M. Shan, Q. Zhang and W. Wang, A stochastic SIS epidemic model with vaccination, Physica A., 2017, 486, 127-143. doi: 10.1016/j.physa.2017.05.083

    CrossRef Google Scholar

    [5] Z. Chang, X. Meng and X. Lu, Analysis of a novel stochastic SIRS epidemic model with two different saturated incidence rates, Physical A., 2017, 472, 103-116. doi: 10.1016/j.physa.2017.01.015

    CrossRef Google Scholar

    [6] Z. Chen, R. Zhang, J. Li and S. Zhang, C. Wei, A stochastic nutrient-phytoplankton model with viral infection and Markov switching, Chaos Soliton Fract., 2020, 140, 110109. doi: 10.1016/j.chaos.2020.110109

    CrossRef Google Scholar

    [7] Y. Deng and M. liu, Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations, Appl. Math. Model., 2020, 78, 482-504. doi: 10.1016/j.apm.2019.10.010

    CrossRef Google Scholar

    [8] K. Fan, Y. Zhang, S. Gao and X. Wei, A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity, Physica A., 2017, 481, 198-208. doi: 10.1016/j.physa.2017.04.055

    CrossRef Google Scholar

    [9] T. Feng and Z. Qiu, Global dynamics of deterministic and stochastic epidemic systems with nonmonotone incidence rate, Int. J. Biomath., DOI: 10.1016/j.physa.2019.01.014.

    Google Scholar

    [10] W. Guo, Y. Cai, Q. Zhang and W. Wang, Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage, Physical A., 2018, 492, 2220-2236. doi: 10.1016/j.physa.2017.11.137

    CrossRef Google Scholar

    [11] R. Has'minskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1980.

    Google Scholar

    [12] J. Heesterbeek and J. Metz, The saturating contact rate in marriage and epidemic models, J. Math. Biol., 1993, 31, 529-539.

    Google Scholar

    [13] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 2000, 42, 599-653. doi: 10.1137/S0036144500371907

    CrossRef Google Scholar

    [14] D. Higham, Analgorithmic introduction to numerical simulation of stochastic differential equations, SIAM review., 2001, 43, 525-546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [15] Z. Hu, Z. Teng and H. Jiang, Stability analysis in a class of discrete SIRS epidemic models, Nonlinear. Anal-Real., 2012, 13, 2017-2033. doi: 10.1016/j.nonrwa.2011.12.024

    CrossRef Google Scholar

    [16] G. Hu, M. Liu and K. Wang, The asymptotic behaviours of an epidemic model with two correlated stochastic perturbations, Appl. Math. Comput., 2012, 218, 10520-10532.

    Google Scholar

    [17] S. Jeffrey and K. Melvin, Absolute humidity modulates influenza survival, transmission, and seasonality, Proc. Natl. Acad. Sci., USA, 2009, 106, 3243-3248. doi: 10.1073/pnas.0806852106

    CrossRef Google Scholar

    [18] W. Ji, Z. Wang and G. Hu, Stationary distribution of a stochastic hybrid phytoplankton model with allelopathy, Adv. Differ. Equ-Ny., 2020, 2020(1), 632. doi: 10.1186/s13662-020-03088-9

    CrossRef Google Scholar

    [19] G. Lan, Z. Chen, C. Wei and S. Zhang, Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion, Physica A., 2018, 511, 61-77. doi: 10.1016/j.physa.2018.07.041

    CrossRef Google Scholar

    [20] A. Lahrouz, L. Omari and D. Kiouach, Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model, Nonlinear Anal-Model., 2011, 16, 59-76. doi: 10.15388/NA.16.1.14115

    CrossRef Google Scholar

    [21] F. Li and X. Meng, Analysis and numerical simulations of a stochastic SEIQR epidemic system with quarantine-adjusted incidence and imperfect vaccination, Comput. Math. Method. M., 2018, DOI: 10.1155/2018/7873902.

    Google Scholar

    [22] Z. Li, Y. Mu and H. Xiang, Mean persistence and extinction for a novel stochastic turbidostat model, Nonlinear Dynam., 2019, 97(1), 185-202. doi: 10.1007/s11071-019-04965-z

    CrossRef Google Scholar

    [23] Q. Liu and Q. Chen, Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence, Physica A., 2015, 428, 140-153. doi: 10.1016/j.physa.2015.01.075

    CrossRef Google Scholar

    [24] J. Liu and F. Wei, Dynamics of stochastic SEIS epidemic model with varying population size, Physica A., 2016, 464, 241-250. doi: 10.1016/j.physa.2016.06.120

    CrossRef Google Scholar

    [25] Q. Liu, D. Jiang, N. Shi and T. Hayat, Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence, Physica A., 2017, 476, 58-69. doi: 10.1016/j.physa.2017.02.028

    CrossRef Google Scholar

    [26] Q. Liu, D. Jiang, T. Hayat and A. Alsaedi, Stationary distribution and extinction of a stochastic dengue epidemic model, J. Franklin. I., 2018, 355, 8891-8914. doi: 10.1016/j.jfranklin.2018.10.003

    CrossRef Google Scholar

    [27] Q. Liu, D. Jiang, T. Hayat and A. Alsaedi, Dynamics of a stochastic multigroup SIQR epidemic model with standard incidence rates, J. Franklin. I., 2019, 356, 2960-2993. doi: 10.1016/j.jfranklin.2019.01.038

    CrossRef Google Scholar

    [28] S. Liu, L. Zhang, X. Zhang and A. li, Dynamics of a stochastic heroin epidemic model with bilinear incidence and varying population size, Int. J. Biomath., 2019, 12(1), 1950005. doi: 10.1142/S1793524519500050

    CrossRef Google Scholar

    [29] M. Lu, J. Huang, S. Ruan and P. Yu, Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate, J. Differ. Equations., 2019, 267, 1859-1898. doi: 10.1016/j.jde.2019.03.005

    CrossRef Google Scholar

    [30] Z. Ma and J. Li, Dynamical modeling and analysis of epidemics, International Association of Geodesy Symposia, 2009.

    Google Scholar

    [31] X. Mao, Stochastic Differential Equations and Applications, Horwood, New York, 1997.

    Google Scholar

    [32] P. Mead, Epidemics of plague past, present, and future, Lancet Infect. Dis., 2019, 19, 459-460. doi: 10.1016/S1473-3099(18)30794-1

    CrossRef Google Scholar

    [33] X. Meng, S. Zhao, T. Feng and T. Zhang, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 2016, 433, 227-242. doi: 10.1016/j.jmaa.2015.07.056

    CrossRef Google Scholar

    [34] E. Mohamed, P. Roger, S. Idriss, S. Idriss and T. Regragui, A stochastic analysis for a triple delayed SIQR epidemic model with vaccination and elimination strategies, J. Appl. Math. Comput., 2020, 64, 781-805. doi: 10.1007/s12190-020-01380-1

    CrossRef Google Scholar

    [35] H. Qi, L. Liu and X. Meng, Dynamics of a Nonautonomous Stochastic SIS Epidemic Model with Double Epidemic Hypothesis, Complexity, 2017, DOI: 10.1155/2017/4861391.

    Google Scholar

    [36] H. Qi, S. Zhang and X. Meng, Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems, Physica A., 2018, 508, 223-241. doi: 10.1016/j.physa.2018.05.075

    CrossRef Google Scholar

    [37] R. Shi, X. Jiang and L. Chen, The effect of impulsive vaccination on an SIR epidemic model, Appl. Math. Comput., 2009, 212, 305-311.

    Google Scholar

    [38] W. Wang, Y. Cai, Z. Ding and Z. Gui, A stochastic differential equation SIS epidemic model incorporating Ornstein-Uhlenbeck process, Physica A., 2018, 509, 921-936. doi: 10.1016/j.physa.2018.06.099

    CrossRef Google Scholar

    [39] C. Wei and L. Chen, A delayed epidemic model with pulse vaccination, Discrete Dyn. Nat. Soc., DOI: 10.1155/2008/746951.

    Google Scholar

    [40] Y. Zhao and D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 2014, 243, 718-727.

    Google Scholar

    [41] Y. Zhou, W. Zhang and S. Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 2014, 244, 118-131.

    Google Scholar

    [42] M. Zhou, H. Xiang and Z. Li, Optimal control strategies for a reaction-diffusion epidemic system, Nonlinear Anal-real., 2019, 46(2019), 446-464.

    Google Scholar

    [43] G. Zhu, G. Chen, H. Zhang and X. Fu, Propagation dynamics of an epidemic model with infective media connecting two separated networks of populations, Commun. Nonlinear Sci., 2015, 20, 240-249. doi: 10.1016/j.cnsns.2014.04.023

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(2380) PDF downloads(452) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint