2020 Volume 10 Issue 6
Article Contents

Ming Chen, Meng Fan, Xin Wang. EFFECT OF TEMPERATURE ON ADAPTIVE EVOLUTION OF PHYTOPLANKTON CELL SIZE[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2644-2658. doi: 10.11948/20200008
Citation: Ming Chen, Meng Fan, Xin Wang. EFFECT OF TEMPERATURE ON ADAPTIVE EVOLUTION OF PHYTOPLANKTON CELL SIZE[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2644-2658. doi: 10.11948/20200008

EFFECT OF TEMPERATURE ON ADAPTIVE EVOLUTION OF PHYTOPLANKTON CELL SIZE

  • Corresponding author: Email address:mfan@nenu.edu.cn(M. Fan) 
  • Fund Project: The authors were supported by the National Natural Science Foundation of China (No. 11671072, 12071068, 11801052) and the Natural Science Foundation of Liaoning Province (No. 2019-ZD-1056, 20180550754)
  • We present a simple nutrient—phytoplankton model that incorporates adaptive evolution and allometric relations. This model allows us to examine the patterns and consequences of adaptive changes in the cell size of phytoplankton under the effect of changes in water temperature. A theoretical study reveals that the ecological reproductive index can be used to characterize the evolutionary dynamics of the nutrient—phytoplankton model. Numerical analysis suggests that phytoplankton should evolve toward the small sizes typical of picophytoplankton as the water temperature increases. This study provides a framework for studying the adaptive evolution of phytoplankton cell size in water ecosystem.
    MSC: 34D20, 92B05, 92D25
  • 加载中
  • [1] P. A. Abrams, M. Hiroyuki and H. Yasushi, Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits, Evol. Ecol., 1993, 7(5), 465–487. doi: 10.1007/BF01237642

    CrossRef Google Scholar

    [2] L. T. Bach, K. T. Lohbeck, T. B. H. Reusch et al., Rapid evolution of highly variable competitive abilities in a key phytoplankton species, Nat. Ecol. Evol., 2018, 2(4), 611.

    Google Scholar

    [3] O. Bernard and B. Remond, Validation of a simple model accounting for light and temperature effect on microalgal growth, Bioresource Technol., 2012, 123, 520–527. doi: 10.1016/j.biortech.2012.07.022

    CrossRef Google Scholar

    [4] J. A. Bonachela, M. Raghib and S. A. Levin, Dynamic model of flexible phytoplankton nutrient uptake, P. Natl. Acad. Sci., 2011, 108, 20633–20638. doi: 10.1073/pnas.1118012108

    CrossRef Google Scholar

    [5] M. Chen, M. Fan, R. Liu et al., The dynamics of temperature and light on the growth of phytoplankton, J. Theor. Biol., 2015, 385, 8–19. doi: 10.1016/j.jtbi.2015.07.039

    CrossRef Google Scholar

    [6] M. Chen, M. Fan, X. Yuan et al., Effect of seasonal changing temperature on the growth of phytoplankton, Math. Biosci. Eng., 2017, 289(5–6), 9–19.

    Google Scholar

    [7] F. B. Christiansen, On conditions for evolutionary stability for a continuously varying character, Am. Nat., 1991, 1, 37–50.

    Google Scholar

    [8] U. Dieckmann, M. Paul and L. Richard, Evolutionary cycling in predator-prey interactions: population dynamics and the Red Queen, J. Theor. Biol., 1995, 176, 91–102. doi: 10.1006/jtbi.1995.0179

    CrossRef Google Scholar

    [9] U. Dieckmann and L. Richard, The dynamical theory of coevolution: a derivation from stochastic ecological processes, J. Math. Biol., 1996, 34(5), 579–612.

    Google Scholar

    [10] I. Eshel, Evolutionary and continuous stability, J. Theor. Biol., 1983, 103, 99–111. doi: 10.1016/0022-5193(83)90201-1

    CrossRef Google Scholar

    [11] Z. V. Finkel, J. Beardall, K. J. Flynn et al., Phytoplankton in a changing world: cell size and elemental stoichiometry, J. Plankton Res., 2010, 32(1), 119–137. doi: 10.1093/plankt/fbp098

    CrossRef Google Scholar

    [12] S. A. H. Geritz, G. Mesze and A. J. M. Johan, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 1998, 12, 35–57. doi: 10.1023/A:1006554906681

    CrossRef Google Scholar

    [13] S. A. H. Geritz, K. Eva and P. Yan, Evolutionary branching and long-term coexistence of cycling predators: critical function analysis, Theor. Popul. Biol., 2007, 71(4), 424–435. doi: 10.1016/j.tpb.2007.03.006

    CrossRef Google Scholar

    [14] G. M. Grimaud, L. E. Guennec, A. Valerie et al., Modelling the effect of temperature on phytoplankton growth across the global ocean, Mathmod, 2015, 48, 228–233.

    Google Scholar

    [15] L. Hao, M. Fan and X. Wang, Effects of nutrient enrichment on coevolution of a stoichiometric producer-grazer system, Math. Biosci. Eng., 2014, 11(4), 841–875. doi: 10.3934/mbe.2014.11.841

    CrossRef Google Scholar

    [16] L. Jiang, O. M. E. Schofield and P. G. Falkowski, Adaptive evolution of phytoplankton cell size, Am. Nat., 2005, 166(4), 496–505. doi: 10.1086/444442

    CrossRef Google Scholar

    [17] S. E. Jorgensen and B. Giuseppe, Fundamentals of ecological modelling, 2001.

    Google Scholar

    [18] J. P. LaSalle, The stability of dynamical systems, regional conference series in applied mathematics, SIAM, Pa., 1976.

    Google Scholar

    [19] E. Litchman, K. F. Edwards and C. A. Klausmeier, Phytoplankton niches, traits and eco-evolutionary responses to global environmental change, Mar. Ecol. Prog. Ser., 2012, 470, 235–248. doi: 10.3354/meps09912

    CrossRef Google Scholar

    [20] I. Loladze, Y. Kuang and J.J. Elser, Stoichiometry in producer-grazer systems: linking energy flow with element cycling, B. Math. Biol., 2000, 62(6), 1137-1162. doi: 10.1006/bulm.2000.0201

    CrossRef Google Scholar

    [21] M. C. B. Mesquita, A. C. C. Prestes, A. M. A. Gomes et al, Direct effects of temperature on growth of different tropical phytoplankton species, Microb. Ecol., 2019, 79(5872), 1–11.

    Google Scholar

    [22] X. A. G. Moran, N. L. P. Urrutia, C. A. Z. Alejandra et al., Increasing importance of small phytoplankton in a warmer ocean, Global Change Biol., 2010, 16, 1137–1144. doi: 10.1111/j.1365-2486.2009.01960.x

    CrossRef Google Scholar

    [23] K. H. Peter and U. Sommer, Interactive effect of warming, nitrogen and phosphorus limitation on phytoplankton cell size, Ecol. Evol., 2015, 5(5), 1011–1024. doi: 10.1002/ece3.1241

    CrossRef Google Scholar

    [24] Z. Pu, M. H. Cortez and L. Jiang, Predator-prey coevolution drives productivity-richness relationships in planktonic systems, Am. Nat., 2017, 189, 1–35. doi: 10.1086/689739

    CrossRef Google Scholar

    [25] J. A. Raven, The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton, Funct. Ecol., 1998, 12, 503–513. doi: 10.1046/j.1365-2435.1998.00233.x

    CrossRef Google Scholar

    [26] L. Rosso, J. R. Lobry and J. P. Flandrois, An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model, J. Theor. Biol., 1993, 162(4), 447–463. doi: 10.1006/jtbi.1993.1099

    CrossRef Google Scholar

    [27] J. M. Smith, Evolution and the Theory of Games, 1982.

    Google Scholar

    [28] M. Striebel, S. Schabhuttl, D. Hodapp et al., Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition, Oecologia, 2016, 182(3), 815–827. doi: 10.1007/s00442-016-3693-3

    CrossRef Google Scholar

    [29] M. K. Thomas, C. T. Kremer and C. A. Klausmeier, A global pattern of thermal adaptation in marine phytoplankton, Science, 2012, 338(6110), 1085–1088. doi: 10.1126/science.1224836

    CrossRef Google Scholar

    [30] J. Uitz, H. Claustre, A. Morel et al., Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll, J. Geophys. Res. Oceans, 2006, 111, 8.

    Google Scholar

    [31] X. Wang, M. Fan and L. Hao, Adaptive evolution of foraging-related trait in intraguild predation system, Math. Biosci., 2016, 274, 1–11. doi: 10.1016/j.mbs.2016.01.005

    CrossRef Google Scholar

    [32] J. Zu, M. Mimura and W. J. Yuichiro, The evolution of phenotypic traits in a predator-prey system subject to Allee effect, J. Theor. Biol., 2010, 262(3), 528–543. doi: 10.1016/j.jtbi.2009.10.022

    CrossRef Google Scholar

    [33] J. Zu and T. Yasuhiro, Adaptive evolution of anti-predator ability promotes the diversity of prey species: Critical function analysis, BioSystems, 2012, 109(2), 192–202. doi: 10.1016/j.biosystems.2012.04.011

    CrossRef Google Scholar

Figures(3)  /  Tables(2)

Article Metrics

Article views(2212) PDF downloads(213) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint