2021 Volume 11 Issue 3
Article Contents

Chen Bolin, Rong An. UNCONDITIONALLY OPTIMAL CONVERGENCE ANALYSIS OF SECOND-ORDER BDF SCHEME FOR LANDAU-LIFSHITZ EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1391-1404. doi: 10.11948/20200189
Citation: Chen Bolin, Rong An. UNCONDITIONALLY OPTIMAL CONVERGENCE ANALYSIS OF SECOND-ORDER BDF SCHEME FOR LANDAU-LIFSHITZ EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1391-1404. doi: 10.11948/20200189

UNCONDITIONALLY OPTIMAL CONVERGENCE ANALYSIS OF SECOND-ORDER BDF SCHEME FOR LANDAU-LIFSHITZ EQUATION

  • Corresponding author: Email: anrong@wzu.edu.cn (R. An)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11771337)
  • The Landau-Lifshitz equation is used to describe the evolution of spin fields in continuum ferromagnets and is a highly nonlinear parabolic problem with the constraint of unit length in the point-wise sense. This paper focuses on the unconditionally optimal error estimates of a linearized second-order BDF scheme for the numerical approximations of the solution to the Landau-Lifshitz equation. Since the point-wise constraint can be deduced from the partial differential equation, we do not take into account it in designing the numerical scheme. A rigorous error analysis is done and we derive the unconditionally optimal $ {\textbf{L}}^2 $ error estimate by using the error splitting technique. Numerical result is shown to check the theoretical analysis.

    MSC: 65N12, 65N30
  • 加载中
  • [1] F. Alouges and P. Jaisson, Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism, Math. Models Methods Appl. Sci., 2006, 16, 299-316. doi: 10.1142/S0218202506001169

    CrossRef Google Scholar

    [2] F. Alouges, E. Kritsikis, J. Steiner and J. Toussaint, A convergent and precise finite element scheme for Landau-Lifshitz-Gilbert equation, Numer. Math., 2014, 128, 407-430. doi: 10.1007/s00211-014-0615-3

    CrossRef Google Scholar

    [3] R. An, Optimal error estimates of linearized Crank-Nicolson Galerkin method for Landau-Lifshitz equation, J. Sci. Comput., 2016, 69(1), 1-27. doi: 10.1007/s10915-016-0181-1

    CrossRef Google Scholar

    [4] L. Bažunas, M. Page and D. Praetorius, A decoupled and unconditionally convergent linear FEM integrator for the Landau-Lifshitz-Gilbert equation with magnetostriction, IMA J. Numer. Anal., 2014, 34, 1361-1385. doi: 10.1093/imanum/drt050

    CrossRef Google Scholar

    [5] J. Barrett, S. Bartels, X. Feng and A. Prohl, A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres, SIAM J. Numer. Anal., 2007, 45, 905-927. doi: 10.1137/050639429

    CrossRef Google Scholar

    [6] S. Bartels, Stability and convergence of finite-element approximation schemes for harmonic maps, SIAM J. Numer. Anal., 2005, 43, 220-238. doi: 10.1137/040606594

    CrossRef Google Scholar

    [7] S. Bartels, Projection-free approximation of geometrically constrained partial differential equations, Math. Comp., 2016, 85, 1033-1049.

    Google Scholar

    [8] S. Bartels, J. Ko and A. Prohl, Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation, Math. Comp., 2008, 77, 773-788.

    Google Scholar

    [9] S. Bartels and A. Prohl, Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation, SIAM J. Numer. Anal., 2006, 44, 1405-1419. doi: 10.1137/050631070

    CrossRef Google Scholar

    [10] S. Brenner and L. Scott, The mathematical theory of finite element methods, Springer, 1994.

    Google Scholar

    [11] J. Chen, C. Wang and C. Xie, Convergence analysis of a second-order semi-implicit projection method for Landau-Lifshitz equation, 2019, arXiv: 1902.09740v2.

    Google Scholar

    [12] I. Cimrák, Error estimates for a semi-implicit numerical scheme solving the Landau-Lifshitz equation with an exchange field, IMA J. Numer. Anal., 2005, 25, 611-634. doi: 10.1093/imanum/dri011

    CrossRef Google Scholar

    [13] W. N. E and X. Wang, Numerical methods for the Landau-Lifshitz equation, SIAM J. Numer. Anal., 2000, 38, 1647-1665. doi: 10.1137/S0036142999352199

    CrossRef Google Scholar

    [14] H. Gao, Optimal error estimates of a linearized backward Euler FEM for the Landau-Lifshitz equation, SIAM J. Numer. Anal., 2014, 52, 2574-2593. doi: 10.1137/130936476

    CrossRef Google Scholar

    [15] T. Gilbert, A Lagrangian formulation of gyromagneitc equation of the magnetization field, Phys. Rev., 1995, 100, 1243-1255.

    Google Scholar

    [16] F. Hecht, New development in FreeFem++, J. Numer. Math., 2012, 20, 251-265.

    Google Scholar

    [17] J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem Part Ⅳ: error analysis for second-order time discretization, SIAM J. Numer. Anal., 1990, 27, 353-384. doi: 10.1137/0727022

    CrossRef Google Scholar

    [18] E. Kim and K. Lipnikov, The mimetic finite difference method for the Landau-Lifshitz equation, J. Comput. Phys., 2017, 328, 109-130. doi: 10.1016/j.jcp.2016.10.016

    CrossRef Google Scholar

    [19] L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Zeitsch. der Sow., 1935, 8, 153-169.

    Google Scholar

    [20] B. Li and W. Sun, Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations, Inter. J. Numer. Anal. Model., 2013, 10, 622-633.

    Google Scholar

    [21] B. Li and W. Sun, Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media, SIAM J. Numer. Anal., 2013, 51, 1959-1977. doi: 10.1137/120871821

    CrossRef Google Scholar

    [22] B. Li, H. Gao and W. Sun, Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations, SIAM J. Numer. Anal., 2014, 52, 933-954. doi: 10.1137/120892465

    CrossRef Google Scholar

    [23] F. Pistella and V. Valente, Numerical stability of a discrete model in the dynamics of ferromagnetic bodies, Numer. Methods Partial Differential Equations, 1999, 15, 544-557. doi: 10.1002/(SICI)1098-2426(199909)15:5<544::AID-NUM2>3.0.CO;2-Q

    CrossRef Google Scholar

    [24] A. Prohl, Computational Micromagnetism, Teubner, Stuttgart, 2001.

    Google Scholar

    [25] X. Wang, C. J. García-Cervera and W. N. E, A Gauss-Seidel projection method for micromagnetics simulations, J. Comput. Phys., 2001, 171, 357-372. doi: 10.1006/jcph.2001.6793

    CrossRef Google Scholar

Tables(1)

Article Metrics

Article views(2233) PDF downloads(286) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint