2021 Volume 11 Issue 3
Article Contents

Antony Raj Aruldass, Divyakumari Pachaiyappan, Choonkil Park. KAMAL TRANSFORM AND ULAM STABILITY OF DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1631-1639. doi: 10.11948/20200356
Citation: Antony Raj Aruldass, Divyakumari Pachaiyappan, Choonkil Park. KAMAL TRANSFORM AND ULAM STABILITY OF DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1631-1639. doi: 10.11948/20200356

KAMAL TRANSFORM AND ULAM STABILITY OF DIFFERENTIAL EQUATIONS

  • In the growth of the field of functional-differential equations and their Ulam stability, many researchers have utilized various methods to prove the Ulam stability of functional and differential equations. Hyers method and the fixed-point method are remarkably applied by many researchers to investigate the Ulam stability of functional and differential equations. In this research work, we propose a new method for investigating the Ulam stability of linear differential equations by using Kamal transform.

    MSC: 44A10, 39B82, 34A40, 26D10
  • 加载中
  • [1] L. Aiemsomboon, W. Sintunavarat, Stability of the generalized logarithmic functional equations arising from fixed point theory, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 2018, 112, 229-238. doi: 10.1007/s13398-017-0375-x

    CrossRef Google Scholar

    [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 1951, 2, 64-66.

    Google Scholar

    [3] C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 1998, 2, 373-380.

    Google Scholar

    [4] Q. H. Alqifiary, S. Jung, Laplace transform and generalized Hyers-Ulam stability of differential equations, Elec. J. Differential Equ., 2014, 80, 11 pages.

    Google Scholar

    [5] Q. H. Alqifiary, J. K. Miljanovic, Note on the stability of system of differential equations $\dot{x}(t)= f(t, x(t))$, Gen. Math. Notes, 2014, 20, 27-33.

    Google Scholar

    [6] N. Eghbali, V. Kalvandi, J. M. Rassias, A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation, Open Math., 2016, 14 237-246.

    Google Scholar

    [7] J. Huang, S. Jung, Y. Li, On Hyers-Ulam stability of nonlinear differential equations, Bull. Korean Math. Soc., 2015, 52, 685-697.

    Google Scholar

    [8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 1941, 27, 222-224. doi: 10.1073/pnas.27.4.222

    CrossRef Google Scholar

    [9] S. Jung, Hyers-Ulam stability of linear differential equation of first order, Appl. Math. Lett., 2004, 17, 1135-1140. doi: 10.1016/j.aml.2003.11.004

    CrossRef Google Scholar

    [10] S. Jung, Hyers-Ulam stability of linear differential equations of first order (Ⅲ), J. Math. Anal. Appl., 2005, 311, 139-146. doi: 10.1016/j.jmaa.2005.02.025

    CrossRef Google Scholar

    [11] S. Jung, Hyers-Ulam stability of linear differential equations of first order (Ⅱ), Appl. Math. Lett., 2006, 19, 854-858. doi: 10.1016/j.aml.2005.11.004

    CrossRef Google Scholar

    [12] S. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl., 2006, 320, 549-561. doi: 10.1016/j.jmaa.2005.07.032

    CrossRef Google Scholar

    [13] S. Jung, Approximate solution of a linear differential equation of third order, Bull. Malay. Math. Sci. Soc., 2012, 35, 1063-1073.

    Google Scholar

    [14] S. Jung, D. Popa, M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric spaces, J. Global Optim., 2014, 59, 13-16.

    Google Scholar

    [15] H. Kim, H. Shin, Approximate Lie $*$-derivations on $\rho$-complete convex modular algebras, J. Appl. Anal. Comput., 2019, 9, 765-776.

    Google Scholar

    [16] Y. Lee, S. Jung, M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal., 2018, 12, 43-61.

    Google Scholar

    [17] T. Li, A. Zada, S. Faisal, Hyers-Ulam stability of nth order linear differential equations, J. Nonlinear Sci. Appl., 2016, 9, 2070-2075. doi: 10.22436/jnsa.009.05.12

    CrossRef Google Scholar

    [18] Y. Li, Y. Shen, Hyers-Ulam stability of linear differential equations of second order, Appl. Math. Lett., 2010, 23, 306-309. doi: 10.1016/j.aml.2009.09.020

    CrossRef Google Scholar

    [19] Z. Lu, G. Lu, Y. Jin, C. Park, The stability of additive $(\alpha, \beta)$-functional equations, J. Appl. Anal. Comput., 2019, 9, 2295-2307.

    Google Scholar

    [20] T. Miura, S. Jung, S. E. Takahasi, Hyers-Ulam-Rassias stability of the Banach space valued linear differential equation $y^{'} = \lambda y$, J. Korean Math. Soc., 2004, 41, 995-1005. doi: 10.4134/JKMS.2004.41.6.995

    CrossRef Google Scholar

    [21] R. Murali, A. Ponmana Selvan, On the generalized Hyers-Ulam stability of linear ordinary differential equations of higher order, Int. J. Pure Appl. Math., 2017, 117(12), 317-326.

    Google Scholar

    [22] R. Murali, A. Ponmana Selvan, Hyers-Ulam-Rassias stability for the linear ordinary differential equation of third order, Kragujevac J. Math., 2018, 42(4), 579-590. doi: 10.5937/KgJMath1804579M

    CrossRef Google Scholar

    [23] M. Obloza, Hyers stability of the linear differential equation, Rockznik Nauk-Dydakt. Prace Math., 1993, 13, 259-270.

    Google Scholar

    [24] M. Obloza, Connection between Hyers and Lyapunov stability of the ordinary differential equations, Rockznik Nauk-Dydakt. Prace Math., 1997, 14, 141-146.

    Google Scholar

    [25] M. Onitsuka, T. Shoji, Hyers-Ulam stability of first order homogeneous linear differential equations with a real valued co-efficients, Appl. Math. Lett., 2017, 63, 102-108. doi: 10.1016/j.aml.2016.07.020

    CrossRef Google Scholar

    [26] I. A. Rus, Ulam stabilities of ordinary differential equations in Banach space, Carpathian J. Math., 2010, 26, 103-107.

    Google Scholar

    [27] S. E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation $y'= \alpha y$, Bull. Korean Math. Soc., 2002, 39, 309-315. doi: 10.4134/BKMS.2002.39.2.309

    CrossRef Google Scholar

    [28] G. Wang, M. Zhou, L. Sun, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 2008, 21, 1024-1028. doi: 10.1016/j.aml.2007.10.020

    CrossRef Google Scholar

    [29] J. Xue, Hyers-Ulam stability of linear differential equations of second order with constant coefficient, Italian J. Pure Appl. Math., 2014, 32, 419-424.

    Google Scholar

    [30] S. M. Ulam, A Collection of the Mathematical Problems, Interscience, New York, 1960.

    Google Scholar

Article Metrics

Article views(1668) PDF downloads(260) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint