2021 Volume 11 Issue 5
Article Contents

Anca Croitoru, Costică Moroşanu, Gabriela Tănase. WELL-POSEDNESS AND NUMERICAL SIMULATIONS OF AN ANISOTROPIC REACTION-DIFFUSION MODEL IN CASE 2D[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2258-2278. doi: 10.11948/20200359
Citation: Anca Croitoru, Costică Moroşanu, Gabriela Tănase. WELL-POSEDNESS AND NUMERICAL SIMULATIONS OF AN ANISOTROPIC REACTION-DIFFUSION MODEL IN CASE 2D[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2258-2278. doi: 10.11948/20200359

WELL-POSEDNESS AND NUMERICAL SIMULATIONS OF AN ANISOTROPIC REACTION-DIFFUSION MODEL IN CASE 2D

  • This paper presents a qualitative study of a nonlinear second-order parabolic problem, endowed with a nonlinearity of cubic type as well as non-homogeneous Cauchy-Neumann boundary conditions. Under certain hypotheses on the input data ($ f(t,x), w(t,x), v_0(x) $), we prove the well-posedness and a priori estimates of a solution in the Sobolev space $ W^{1,2}_p(Q) $, extending the results already proven by other authors. Our mathematical model can be applied in many physical phenomena, such as image processing. Numerical simulations illustrate the effectiveness of the mathematical model in image restoration.

    MSC: 35Bxx, 35K55, 35K60, 35Qxx, 65Nxx, 68U10
  • 加载中
  • [1] S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metallurgica, 1979, 27, 1084-1095.

    Google Scholar

    [2] T. Barbu and C. Moroşanu, Compound PDE-Based Additive Denoising Solution Combining an Improved Anisotropic Diffusion Model to a 2D Gaussian Filter Kernel, East Asian Journal on Applied Mathematics, 2018, 1-12, doi: 10.4208/eajam.270318.260518.

    Google Scholar

    [3] T. Barbu, A. Miranville and C. Moroşanu, A qualitative analysis and numerical simulations of a nonlinear second-order anisotropic diffusion problem with non-homogeneous Cauchy-Neumann boundary conditions, Applied Mathematics and Computation, 2019, 350, 170-180, doi: 10.1016/j.amc.2019.01.004.

    CrossRef Google Scholar

    [4] T. Benincasa, A. Favini and C. Moroşanu, A Product Formula Approach to a Non-homogeneous Boundary Optimal Control Problem Governed by Nonlinear Phase-field Transition System. PART I: A Phase-field Model, J. Optim. Theory and Appl., 2011, 148(1), 14-30. doi: 10.1007/s10957-010-9742-x

    CrossRef Google Scholar

    [5] J. Cai, S. Osher and Z. Shen, Split Bregman methods and frame based image restoration, Multiscale Model. Sim., 2009, 8(2), 337-369.

    Google Scholar

    [6] Q. Chen, P. Montesinos, Q. Sun, P. Heng and D. Xia, Adaptive total variation denoising based on difference curvature, Image Vis. Comput., 2010, 28(3), 298-306. doi: 10.1016/j.imavis.2009.04.012

    CrossRef Google Scholar

    [7] O. Cârjǎ, A. Miranville and C. Moroşanu, On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary conditions, Nonlinear Analysis. TMA, 2015, 113, 190-208, http://dx.doi.org/10.1016/j.na.2014.10.003. doi: 10.1016/j.na.2014.10.003

    CrossRef Google Scholar

    [8] I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications. Clarendon, Oxford, 1995.

    Google Scholar

    [9] A. Gavriluţ and C. Moroşanu, Well-Posedness for a Nonlinear Reaction-Diffusion Equation Endowed with Nonhomogeneous Cauchy-Neumann Boundary Conditions and Degenerate Mobility, ROMAI J., 2018, 14(1), 129-141, https://rj.romai.ro/arhiva/2018/1/Gavrilut-Morosanu-final.pdf.

    Google Scholar

    [10] F. Karami, D. Meskine and K. Sadik, A new nonlocal model for the restoration of textured images, Journal of Applied Analysis and Computation, 2019, 9(6), 2070-2095. doi: 10.11948/20170189

    CrossRef Google Scholar

    [11] O. A. Ladyzhenskaya, B. A. Solonnikov and N. N. Uraltzava, Linear and quasi-linear equations of parabolic type, Prov. Amer. Math. Soc., 1968.

    Google Scholar

    [12] J. L. Lions, Control of distributed singular systems, Gauthier-Villars, Paris, 1985.

    Google Scholar

    [13] L. Ma, T. Zeng and G. Li, Hybrid variational model for texture image restoration, East. Asia. J. Appl. Math., 2017, 7, 629-642. doi: 10.4208/eajam.090217.300617a

    CrossRef Google Scholar

    [14] A. Miranville and A. J. Ntsokongo, On anisotropic Caginalp phase-field type models with singular nonlinear terms, Journal of Applied Analysis and Computation, 2018, 8(3), 655-674. doi: 10.11948/2018.655

    CrossRef Google Scholar

    [15] A. Miranville and C. Moroşanu, A Qualitative Analysis of a Nonlinear Second-Order Anisotropic Diffusion Problem with Non-homogeneous Cauchy-Stefan-Boltzmann Boundary Conditions, Applied Mathematics & Optimization, 2019, doi: https://doi.org/10.1007/s00245-019-09643-5.

    Google Scholar

    [16] A. Miranville and G. Schimperna, Nonisothermal phase separation based on a microforce balance, Discrete Cont. Dyn. Systems-Series B, 2005, 5(3), 753-768, doi: 10.3934/dcdsb.2005.5.753.

    CrossRef Google Scholar

    [17] C. Moroşanu, Approximation of the phase-field transition system via fractional steps method, Numer. Funct. Anal. & Optimiz., 1997, 18(5-6), 623-648.

    Google Scholar

    [18] C. Moroşanu, Cubic spline method and fractional steps schemes to approximate the phase-field system with non-homogeneous Cauchy-Neumann boundary conditions, ROMAI J., 2012, 8(1), 73-91.

    Google Scholar

    [19] C. Moroşanu, Analysis and optimal control of phase-field transition system: Fractional steps methods, Bentham Science Publishers, 2012, http://dx.doi.org/10.2174/97816080535061120101.

    Google Scholar

    [20] C. Moroşanu, Well-posedness for a phase-field transition system endowed with a polynomial nonlinearity and a general class of nonlinear dynamic boundary conditions, Journal of Fixed Point Theory and Applications, 2016, 18, 225-250, doi: 10.1007/s11784-015-0274-8.

    CrossRef Google Scholar

    [21] C. Moroşanu, Qualitative and quantitative analysis for a nonlinear reaction-diffusion equation, ROMAI J., 2016, 12(2), 85-113, https://rj.romai.ro/arhiva/2016/2/Morosanu.pdf.

    Google Scholar

    [22] C. Moroşanu and A. Croitoru, Analysis of an iterative scheme of fractional steps type associated to the phase-field equation endowed with a general nonlinearity and Cauchy-Neumann boundary conditions, J. Math. Anal. Appl., 2015, 425, 1225-1239, http://dx.doi.org/10.1016/j.jmaa.2015.01.033. doi: 10.1016/j.jmaa.2015.01.033

    CrossRef Google Scholar

    [23] C. Moroşanu and A. M. Moşneagu, On the numerical approximation of the phase-field system with non-homogeneous Cauchy-Neumann boundary conditions. Case 1D, ROMAI J., 2013, 9(1), 91-110.

    Google Scholar

    [24] C. Moroşanu and D. Motreanu, The phase field system with a general nonlinearity, International Journal of Differential Equations and Applications, 2000, 1(2), 187-204.

    Google Scholar

    [25] C. Moroşanu, S. Pavǎl and C. Trenchea, Analysis of stability and errors of three methods associated to the nonlinear reaction-diffusion equation supplied with homogeneous Neumann boundary conditions, Journal of Applied Analysis and Computation, 2017, 7(1), 1-19, doi:10.11948/2017001.

    CrossRef Google Scholar

    [26] A. J. Ntsokongo, On higher-order anisotropic Caginalp phase-field systems with polynomial nonlinear terms, Journal of Applied Analysis and Computation, 2017, 7(3), 992-1012. doi: 10.11948/2017062

    CrossRef Google Scholar

    [27] A. A. Ovono, Numerical approximation of the phase-field transition system with non-homogeneous Cauchy-Neumann boundary conditions in both unknown functions via fractional steps methods, Journal of Applied Analysis and Computation, 2013, 3(4), 377-397. doi: 10.11948/2013028

    CrossRef Google Scholar

    [28] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, Proc. of IEEE Computer Society Workshop on Computer Vision, 1987, 16-22.

    Google Scholar

    [29] L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 1992, 60(1), 259-268.

    Google Scholar

    [30] S. J. Ruuth, Implicit-explicit methods for reaction-diffusion problems in pattern formation, J. Math. Biol., 1995, 34, 148-176. doi: 10.1007/BF00178771

    CrossRef Google Scholar

    [31] F. Sciacchitano, Y. Dong and M. S. Andersen, Total variation based parameter-free model for impulse noise removal, Numer. Math. Theor. Meth. Appl., 2017, 10, 186-204. doi: 10.4208/nmtma.2017.m1613

    CrossRef Google Scholar

    [32] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition, Applied Mathematical Sciences, Springer-Verlag, New York, 1997, 68.

    Google Scholar

    [33] T. Wei, L. Wang, P. Lin, J. Chen, Y. Wang and H. Zheng, Learning non-negativity constrained variation for imaged denoising and deblurring, Numer. Math. Theor. Meth. Appl., 2017, 10, 852-871. doi: 10.4208/nmtma.2017.m1653

    CrossRef Google Scholar

Figures(4)

Article Metrics

Article views(1794) PDF downloads(238) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint