2021 Volume 11 Issue 5
Article Contents

Jing Li, Gongsheng Tong, Rouzi Duan, Shanlin Qin. TIKHONOV REGULARIZATION METHOD OF AN INVERSE SPACE-DEPENDENT SOURCE PROBLEM FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2387-2401. doi: 10.11948/20200397
Citation: Jing Li, Gongsheng Tong, Rouzi Duan, Shanlin Qin. TIKHONOV REGULARIZATION METHOD OF AN INVERSE SPACE-DEPENDENT SOURCE PROBLEM FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2387-2401. doi: 10.11948/20200397

TIKHONOV REGULARIZATION METHOD OF AN INVERSE SPACE-DEPENDENT SOURCE PROBLEM FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION

  • Corresponding author: Email: lijingnew@126.com (J. Li) 
  • Fund Project: Jing Li is supported by Hunan Provincial Natural Science Foundation of China (2021JJ30697) and the Scientific Research Project of the Hunan Provincial office of Education (20A022). Shanlin Qin is supported by the National Natural Science Foundation of China (11801543)
  • The aim of this paper is to identify a space-dependent source term in the time-space fractional diffusion equation with an initial-boundary data and an additional measurement data at the final time point. A series expression for the solution of the direct problem is used to transfer the inverse problem into the first type of Fredholm integral equation. Before solving the inverse problem, the uniqueness of its solution is proved. We then use the Tikhonov regularization method to deal with the integral equation and obtain a series expression for the regularized solution of the inverse problem. Moreover, according to the prior and the posterior regularization parameter selection rules, we prove the convergence rates of the regularization solution. Finally, we provide some numerical experiments to show the effectiveness of our method.

    MSC: 65M32, 65N20, 47A52
  • 加载中
  • [1] N. M. Dien, D. N. D. Hai, T. Q. Viet and D. D. Trong, On Tikhonov¡¯s method and optimal error bound for inverse source problem for a time-fractional diffusion equation, Comput. Math. Appl., 2020, 80(1), 61-81. doi: 10.1016/j.camwa.2020.02.024

    CrossRef Google Scholar

    [2] H. W. Engl, M. Hanke and A. Neubauer, Regularization of inverse problem, Kluwer Academic Publishers, Netherlands, 1996.

    Google Scholar

    [3] Fa and K. Sau, Fractal and generalized Fokker Planck equations: description of the characterization of anomalous diffusion in magnetic resonance imaging, J. Stat. Mech. Theory Exp., 2017, 2017(3), 033207. doi: 10.1088/1742-5468/aa61c6

    CrossRef Google Scholar

    [4] S. Fedotov and N. Korabel, Subdiffusion in an external potential: anomalous effects hiding behind normal behavior, Phys. Rev. E., 2015, 91(4), 042112.

    Google Scholar

    [5] B. Guo, X. Pu and F. Huang, Fractional partial differential equations and their numerical solutions, Science Press, Beijing, 2015.

    Google Scholar

    [6] P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Review., 1992, 34(4), 561-580. doi: 10.1137/1034115

    CrossRef Google Scholar

    [7] K. M. Hanke and L. P. C. Hansen, Regularization methods for large-scale problems, Surveys Math. Indust., 1993, 3, 253-315.

    Google Scholar

    [8] P. C. Hansen, Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algorithms., 1994, 6(1), 1-35. doi: 10.1007/BF02149761

    CrossRef Google Scholar

    [9] P. K. Kang, M. Dentz, T. L. Borgne and S. L, Anomalous transport in disordered fracture networks: spatial Markov model for dispersion with variable injection models, Adv. Water Resour., 2017, 106, 80-94.

    Google Scholar

    [10] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 2006, 204, vii-x. doi: 10.1016/S0304-0208(06)80001-0

    CrossRef Google Scholar

    [11] A. Kirsch, An introduction to the mathematical theory of inverse problem, Springer, New York, 2011.

    Google Scholar

    [12] C. Li and M. Cai, Theory and numerical approximations of fractional integrals and derivatives, Society for Industrial and Applied Mathematics, Philadelphia, 2019.

    Google Scholar

    [13] J. Li and B. Guo, Parameter identification in fractional differential equations, Acta Math. Sci., 2013, 33, 855-864. doi: 10.1016/S0252-9602(13)60045-4

    CrossRef Google Scholar

    [14] J. Li, F. Liu, L. Feng and I. Turner, A novel finite volume method for the Riesz space distributed order advection-diffusion equation, Appl. Math. Model., 2017, 46, 536-553. doi: 10.1016/j.apm.2017.01.065

    CrossRef Google Scholar

    [15] Y. Li and T. Wei, An inverse time-dependent source problem for a time-space fractional diffusion equation, Appl. Comput. Math., 2018, 336, 257-271.

    Google Scholar

    [16] F. Liu, L. Feng, V. Anh and J. Li, Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains, Comput. Math. Appl., 2019, 78(5), 1637-1650. doi: 10.1016/j.camwa.2019.01.007

    CrossRef Google Scholar

    [17] J. Liu, M. Yamamoto and L. Yan, On the reconstruction of unknown time-dependent boundary sources for time fractional diffusion process by distributing measurement, Inverse Probl., 2016, 32, 015009. doi: 10.1088/0266-5611/32/1/015009

    CrossRef Google Scholar

    [18] H. Pollard, The completely monotonic character of the Mittag-Leffler function $E_\alpha(-X)$, Bull. Amer. Math. Soc., 1948, 54(1948), 1115-1116.

    $E_\alpha(-X)$" target="_blank">Google Scholar

    [19] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 2011, 382(1), 426-447. doi: 10.1016/j.jmaa.2011.04.058

    CrossRef Google Scholar

    [20] I. M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: a century after Einstein¡¯s Brownian motion, Chaos, 2005, 15, 26103. doi: 10.1063/1.1860472

    CrossRef Google Scholar

    [21] C. Sun and J. Liu, An inverse source problem for distributed order time-fractional diffusion equation, Inverse Probl., 2020, 36(5), 055008. doi: 10.1088/1361-6420/ab762c

    CrossRef Google Scholar

    [22] Z. Sun and G. Gao, Finite difference methods for fractional differential equations, Science Press, Beijing, 2016.

    Google Scholar

    [23] S. Tatar, R. Tnaztepe and S. Ulusoy, Determination of an unknown source term in a space-time fractional diffusion equation, J. Fract. Calc. Appl., 2015, 6(1), 83-90.

    Google Scholar

    [24] S. Tatar, R. Tnaztepe and S. Ulusoy, Simultaneous inversion for the exponents of the fractional time and space derivatives in the space-time fractional diffusion equation, Appl. Anal., 2016, 95(1), 1-23. doi: 10.1080/00036811.2014.984291

    CrossRef Google Scholar

    [25] S. Tatar and S. Ulusoy, An inverse source problem for a one-dimensional space-time fractional diffusion equation, Appl. Anal., 2014, 94(11), 1-12.

    Google Scholar

    [26] N. Tuan and L. Long, Fourier truncation method for an inverse source problem for space-time fractional diffusion equation, Electron J. Differ. Eq., 2017, 2017(122), 1-16.

    Google Scholar

    [27] H. Wang and T. S. Basu, A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Comput., 2012, 3(4), 1032-1044.

    Google Scholar

    [28] T. Wei and J. Wang, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 2014, 78, 95-111. doi: 10.1016/j.apnum.2013.12.002

    CrossRef Google Scholar

    [29] T. Wei, X. Li and Y. Li, An inverse time-dependent source problem for a time-fractional diffusion equation, Inverse Probl., 2016, 32, 085003. doi: 10.1088/0266-5611/32/8/085003

    CrossRef Google Scholar

    [30] T. Wei and Y. Zhang, The backward problem for a time-fractional diffusion-wave equation in a bounded domain, Comput. Math. Appl., 2018, 75(10), 3632-3648. doi: 10.1016/j.camwa.2018.02.022

    CrossRef Google Scholar

    [31] Y. Zhu and Z. Sun, A high order difference scheme for the space and time fractional Bloch-Torrey equation, Comput. Methods Appl. Math., 2018, 18(1), 147-164. doi: 10.1515/cmam-2017-0034

    CrossRef Google Scholar

Figures(1)  /  Tables(1)

Article Metrics

Article views(2280) PDF downloads(398) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint