2022 Volume 12 Issue 4
Article Contents

Svetlin G. Georgiev, İnci M. Erhan. LAGRANGE INTERPOLATION ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1294-1307. doi: 10.11948/20200461
Citation: Svetlin G. Georgiev, İnci M. Erhan. LAGRANGE INTERPOLATION ON TIME SCALES[J]. Journal of Applied Analysis & Computation, 2022, 12(4): 1294-1307. doi: 10.11948/20200461

LAGRANGE INTERPOLATION ON TIME SCALES

  • In this paper, we introduce the Lagrange interpolation polynomials on time scales. We define an alternative type of interpolation functions called $ \sigma$-Lagrange interpolation polynomials. We discuss some properties of these polynomials and show that on some special time scales, including the set of real numbers, these two types of interpolation polynomials coincide. We apply our results on some particular examples.

    MSC: 41A05, 34N05, 65D05
  • 加载中
  • [1] H. Alıcı and H. Taşeli, Pseudospectral methods for solving an equation of hypergeometric type with a perturbation, J. Comp. Appl. Math., 2010, 234, 1140-1152. doi: 10.1016/j.cam.2009.06.004

    CrossRef Google Scholar

    [2] H. Alıcı, Pseudospectral methods for the two-dimensional Schrödinger equation with symmetric nonseparable potentials, Hacettepe J. Math. Stat., 2020, 49(2), 539-552.

    Google Scholar

    [3] M. Bohner and R. P. Agarwal, Basic calculus on time scales and some of its applications, Result Math., 1999, 35, 3-22. doi: 10.1007/BF03322019

    CrossRef Google Scholar

    [4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.

    Google Scholar

    [5] M. Bohner and S. Georgiev, Multivariable Dynamic Calculus on Time Scales, Springer, 2016.

    Google Scholar

    [6] M. Bohner, İ. M. Erhan and S. Georgiev, The Euler method for dynamic equations on general time scales, Nonlinear Studies, 2020, 27(2), 415-431.

    Google Scholar

    [7] S. Boorboor, H. Jafari and S. A.H. Feghhi, Development of a novel approach for precise pulse height extraction using Lagrange interpolation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 917, 82-88.

    Google Scholar

    [8] J. P. Boyd, Chebyshev and Fourier Spectral Methods, (2nd. rev. ed. ), Dover Publications, Mineola N.Y., 2001.

    Google Scholar

    [9] B. Das and D. Chakrabarty, Lagrange interpolation formula: representation of numerical data by a polynomial curve, Int. J. of Math. Trends and Technology, 2016, 34(2), 64-72. doi: 10.14445/22315373/IJMTT-V34P514

    CrossRef Google Scholar

    [10] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge, Cambridge University Press, 1996.

    Google Scholar

    [11] S. Georgiev, Integral Equations on Time Scales, Atlantis Press, 2016.

    Google Scholar

    [12] S. Georgiev, Functional Dynamic Equations on Time Scales, Springer, 2019.

    Google Scholar

    [13] S. Georgiev, Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales, Springer, 2018.

    Google Scholar

    [14] S. Georgiev and İ. M. Erhan, Nonlinear Integral Equations on Time Scales, Nova Science Publishers, 2019.

    Google Scholar

    [15] S. Georgiev and İ. M. Erhan, The Taylor series method and trapezoidal rule on time scales, Appl. Math. and Comp., 2020, 378. DOI: 10.1016/j.amc.2020.125200.

    CrossRef Google Scholar

    [16] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 1990, 18, 18-56. doi: 10.1007/BF03323153

    CrossRef Google Scholar

    [17] S. Hilger, Differential and difference calculus-unified!, Nonlinear Anal., 1997, 30(5), 2683-2694. doi: 10.1016/S0362-546X(96)00204-0

    CrossRef Google Scholar

    [18] X. Liu and C. You, Explicit bound for quadratic Lagrange interpolation constant on triangular finite elements, Appl. Math. and Comp., 2018, 317, 693-701.

    Google Scholar

    [19] H. Nouriani and R. Ezzati, Numerical solution of two-dimensional linear fuzzy Fredholm integral equations by the fuzzy Lagrange interpolation, Advances in Fuzzy Systems, 2018. DOI: 10.1155/2018/5405124.

    CrossRef Google Scholar

    [20] E. Shoukralla, H. Elgohary and B. Ahmed, Barycentric Lagrange interpolation for solving Volterra integral equations of the second kind, J. Phys. : Conf. Ser., 2020, 1447, 012002. doi: 10.1088/1742-6596/1447/1/012002

    CrossRef Google Scholar

    [21] L. N. Trefethen, Spectral Methods in MATLAB (3rd. repr. ed. ), SIAM, Philadelphia Pa., 2002.

    Google Scholar

    [22] H. Wang, Y. Gu and Y. Yu, Numerical solution of fractional-order time-varying delayed differential systems using Lagrange interpolation, Nonlinear Dynamics, 2019, 95, 809-822. doi: 10.1007/s11071-018-4597-z

    CrossRef Google Scholar

    [23] Y. Yeh, Vibration analysis of the plate with the regular and irregular domain by using the Barycentric Lagrange interpolation, Journal of Low Frequency Noise, Vibration and Active Control, 2020, 39(3), 485-501.

    Google Scholar

    [24] S. Yi and L. Yao, A steady barycentric Lagrange interpolation method for the 2D higher-order time-fractional telegraph equation with nonlocal boundary condition with error analysis, Numerical Methods for Partial Differential Equations, 2019, 35(5), 1694-1716. doi: 10.1002/num.22371

    CrossRef Google Scholar

    [25] X. Zhou, J. Li, Y. Wang and W. Zhang, Numerical simulation of a class of hyperchaotic system using barycentric Lagrange interpolation collocation method, Complexity, 2019. DOI: 10.1155/2019/1739785.

    CrossRef Google Scholar

    [26] K. Zhang, Q. Huang, Y. Zhang, J. Song and J. Shi Hybrid Lagrange interpolation differential evolution algorithm for path synthesis, Mechanism and Machine Theory, 2019, 143, 512-540.

    Google Scholar

Article Metrics

Article views(1709) PDF downloads(318) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint