2022 Volume 12 Issue 5
Article Contents

Xinhong Zhang, Xiaoling Zou. SUFFICIENT AND NECESSARY CONDITIONS FOR PERSISTENCE AND EXTINCTION OF A STOCHASTIC TWO-PREY ONE-PREDATOR SYSTEM[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1861-1884. doi: 10.11948/20210382
Citation: Xinhong Zhang, Xiaoling Zou. SUFFICIENT AND NECESSARY CONDITIONS FOR PERSISTENCE AND EXTINCTION OF A STOCHASTIC TWO-PREY ONE-PREDATOR SYSTEM[J]. Journal of Applied Analysis & Computation, 2022, 12(5): 1861-1884. doi: 10.11948/20210382

SUFFICIENT AND NECESSARY CONDITIONS FOR PERSISTENCE AND EXTINCTION OF A STOCHASTIC TWO-PREY ONE-PREDATOR SYSTEM

  • This paper applies a new approach for stochastic Kolmogorov systems generalized by Hening and Nguyen to describe the dynamics of a stochastic two independent prey one predator system perturbed by white noise. Through calculating Lyapunov exponents, we thoroughly address the stability of the ergodic invariant probability measures. Sufficient and necessary conditions under which the species persist as well as conditions under which some species go extinct are established for this three dimensional models. One of the key points is that the critical cases for Lyapunov exponents being zero are considered. Finally, some numerical simulations illustrate the analytical results.

    MSC: 92D25, 60H10, 37H15
  • 加载中
  • [1] B. Dubey and R. Upadhyay, Persistence and extinction of one-prey and two-predators system, Nonlinear Anal: Model Control, 2004, 9, 307-329. doi: 10.15388/NA.2004.9.4.15147

    CrossRef Google Scholar

    [2] P. Djomegni, K. Govinder and E. Goufo, Movement, competition and pattern formation in a two prey-one predator food chain model, Comp. APPL. Math., 2018, 37, 2445-2459. doi: 10.1007/s40314-017-0459-4

    CrossRef Google Scholar

    [3] N. Du, D. H. Nguyen and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 2016, 53, 187-202. doi: 10.1017/jpr.2015.18

    CrossRef Google Scholar

    [4] T. Gard and T. Hallam, Persistence in food webs. I. Lotka-Volterra food chains, Bull. Math. Biol., 1979, 41, 877-891.

    Google Scholar

    [5] G. Harrison, Global stability of food chains, Am. Nat., 1979, 114, 455-457. doi: 10.1086/283493

    CrossRef Google Scholar

    [6] R. Has'miniskii, Stochastic Stability of Differential equations, Sijthoff and Noordhoff, Alphen aan den Rijn, 1980.

    Google Scholar

    [7] A. Hening and D. Hguyen, Coexistence and extinction for stochastic Kolmogorov systems, Ann. Appl. Probab., 2017, 28, 1893-1942.

    Google Scholar

    [8] A. Hening and D. Hguyen, Stochastic Lotka-Volterra food chains, J. Math. Biol., 2018, 77, 135-163. doi: 10.1007/s00285-017-1192-8

    CrossRef Google Scholar

    [9] A. Hening and D. Hguyen, Persistence in stochastic Lotka-Volterra food chains with intrasepcific competition, Bull. Math. Biol., 2018, 80, 2527-2560. doi: 10.1007/s11538-018-0468-5

    CrossRef Google Scholar

    [10] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 2001, 43, 525-546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [11] C. Ji, D. Jiang and D. Lei, Dynamical behavior of a one predator and two independent preys system with stochastic perturbations, Physica A, 2019, 515, 649-664. doi: 10.1016/j.physa.2018.10.006

    CrossRef Google Scholar

    [12] M. Liu and C. Bai, Optimal harvesting of a stochastic mutualism model with regime-switching, Appl. Math. Comut., 2020, 373, 125040.

    Google Scholar

    [13] J. Lliber and D. Xiao, Global dynamics of a Lotka-Volterra model with two predators competing for one prey, SIAM J. Appl. Math., 2014, 74, 434-453. doi: 10.1137/130923907

    CrossRef Google Scholar

    [14] M. Liu and P. S. Mandal, Dynamical behavior of a one-prey two-prey model with random perturbations, Commun. Nonlinear Sci. Numer. Simulat., 2015, 28, 123-137. doi: 10.1016/j.cnsns.2015.04.010

    CrossRef Google Scholar

    [15] M. Liu and K. Wang, Dynamics of a two-prey one-predator system in random environments, J. Nonlinear Sci., 2013, 23, 751-775. doi: 10.1007/s00332-013-9167-4

    CrossRef Google Scholar

    [16] X. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 2002, 97, 95-110. doi: 10.1016/S0304-4149(01)00126-0

    CrossRef Google Scholar

    [17] D. Nguyen and G. Yin, Asymptotic analysis for a stochastic chemostat model in wastewater treatment, https://arxivorg/pdf/171007897pdf2017.10.24.

    Google Scholar

    [18] J. So, A note on the global stability and bifurcation phenomenon of a Lotka-Volterra food chain, J. Theor. Biol., 1979, 80, 185-187. doi: 10.1016/0022-5193(79)90204-2

    CrossRef Google Scholar

    [19] X. Zhang, Y. Li and D. Jiang, Dynamics of a stochastic Holling type Ⅱ predator-prey model with hyperboLic mortality, Nonlinear Dyn., 2017, 87, 2011-2020. doi: 10.1007/s11071-016-3172-8

    CrossRef Google Scholar

    [20] Y. Zhao, S. Yuan and J. Ma, Survival and stationary distribution analysis of a stochastic competitive model of three species on a polluted environment, Bull. Math. Biol., 2015, 77, 1285-1326. doi: 10.1007/s11538-015-0086-4

    CrossRef Google Scholar

    [21] X. Zou, Y. Zhen, L. Zhang and J. Lv, Survivability and stochastic bifurcations for a stochastic Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simulat., 2020, 83, 105136. doi: 10.1016/j.cnsns.2019.105136

    CrossRef Google Scholar

    [22] X. Zhang, The global dynamics of stochastic Holling type Ⅱ predator-prey models with non constant mortality rate, Filomat, 2017, 31, 5811-5825. doi: 10.2298/FIL1718811Z

    CrossRef Google Scholar

Figures(11)  /  Tables(1)

Article Metrics

Article views(1832) PDF downloads(185) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint