Citation: | Hui Bi, Yanan Xu, Yang Sun. DIFFERENCE QUOTIENT ESTIMATES AND ACCURACY ENHANCEMENT OF DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR CONVECTION-DIFFUSION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 1766-1796. doi: 10.11948/20220012 |
In this paper, we apply the post-processing technique to the improvement of the superconvergence of the discontinuous Galerkin method for the nonlinear convection-diffusion equations. We firstly analyze the error estimate and convergence accuracy under $ L^{2} $-norm, and then demonstrate that the $ \alpha $-order difference quotient of DG error is of order $ k+3/2-\alpha/2 $ when the upwind fluxes are used. By the duality argument, we construct an appropriate dual equation, and futher obtain superconvergence results of order in the negative-order norm, namely $ 2k+3/2-\alpha/2 $ order superconvergence accuracy. Finally, we choose an appropriate kernel function and apply the SIAC filter to the nonlinear convection-diffusion equation to obtain at least $ 3k/2+1 $ order superconvergence for post-processed solutions. All theoretical results are proved by numerical experiments.
[1] | H. Bi and C. Qian, Superconvergence of the local discontinuous Galerkin method for one-dimensional nonlinear convection-diffusion problems, Computers and Mathematics with Applications, 2017, 233, 1–20. DOI: 10.1186/s13660-017-1489-6. |
[2] | J. H. Bramble and A. H. Schatz, Higher order local accuracy by averaging in the finite element method, Mathematics of Computation, 1977, 31(27), 94–111. DOI: 10.2307/2005782. |
[3] | B. Cockburn, M. Luskin, C. Shu and E. Süli, Enhanced accuracy by post-processing for finite element methods for hyperbolic equations, Mathematics of Computation, 2003, 72(242), 577–606. DOI: 10.1090/S0025-5718-02-01464-3. |
[4] | S. Curtis, R. M. Kirby, J. K. Ryan and C. Shu, Post processing for the discontinuous Galerkin method over nonuniform meshes, SIAM Journal on Scientific Computing, 2007, 30(1), 272–289. DOI: 10.1137/070681284. |
[5] | L. Ji, Y. Xu and J. K. Ryan, Accuracy-enhancement of discontinuous Galerkin solutions for convection diffusion equations in multiple-dimensions, Mathematics of Computation, 2012, 81(280), 1929–1950. DOI: 10.1090/s0025-5718-2012-02586-5. |
[6] | L. Ji, Y. Xu and J. K. Ryan, Negative-order norm estimates for nonlinear hyperbolic conservation laws, Journal of Scientific Computing, 2013, 54(2–3), 531–548. DOI: 10.1007/s10915-012-9668-6. |
[7] | J. King, H. Mirzaee, J. Ryan and et al, Smoothness-Increasing Accuracy-Conserving (SIAC) filtering for discontinuous Galerkin solutions: Improved errors versus higher-order accuracy, Journal of Scientific Computing, 2012, 53, 129–149. DOI: 10.1007/s10915-012-9593-8. |
[8] |
X. Li, J. K. Ryan, R. M. Kirby and C. Vuik, Smoothness-Increasing Accuracy-Conserving (SIAC) filters for derivative approximations of discontinuous Galerkin (DG) solutions over nonuniform meshes and near boundaries, Journal of Computational and Applied Mathematics, 2016, 294, 275–296. DOI: |
[9] | X. Li, J. K. Ryan, R. M. Kirby and C. Vuik, Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering for Discontinuous Galerkin Solutions over Nonuniform Meshes: Superconvergence and Optimal Accuracy, Journal of Scientific Computing, 2019, 1–31. DOI: org/10.1007/s10915-019-00920-7. |
[10] | B. Mahboub, Asymptotically exact posteriori error estimates for the local discontinuous Galerkin (LDG) method applied to nonlinear convection diffusion problems, Journal of Scientific Computing, 2018, 76(3), 1868–1904. DOI: 10.1007/s10915-018-0687-9. |
[11] | B. Mahboub, A Superconvergent Local Discontinuous Galerkin Method for Nonlinear Fourth-Order Boundary-Value Problems, Applied Numerical Mathematics, 2019, 139, 62–76. DOI: 10.1142/S021987621950035X. |
[12] | X. Meng and J. K. Ryan, Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: difference quotient estimates and accuracy enhancement, Numerical Mathematics, 2017, 136, 27–73. DOI: 10.1007/s00211-016-0833-y. |
[13] | X. Meng and J. K. Ryan, Difference quotient estimates and accuracy enhancement of discontinuous Galerkin methods for nonlinear symmertric systems of hyperbolic conservation laws, IMA Journal of Numerical Analysis, 2018, 136, 142–170. DOI: 10.1093/imanum/drnxxx. |
[14] | F. Miloslav, K. Václav, N. Karel and P. Jaroslava, Analysis of space–time discontinuous Galerkin method for nonlinear convection–diffusion problems, Numerische Mathematik, 2007, 117(2), 251–288. DOI: 10.1007/s00211-010-0348-x. |
[15] | H. Mirzaee, L. Ji, J. K. Ryan and R. Kirby, Smoothness-Increasing Accuracy-Conserving (SIAC) post processing for discontinuous Galerkin solutions over structured triangular meshes, SIAM Journal on Scientific Computing, 2011, 49(5), 1899–1920. DOI: 10.1007/s10915-011-9535-x. |
[16] | H. Mirzaee, J. K. Ryan and R. Kirby, Smoothness-Increasing Accuracy-Conserving (SIAC) filters for discontinuous Galerkin solutions: Application to structured tetrahedral meshes, Journal of Scientific Computing, 2014, 58, 690–704. DOI: 10.1007/s10915-013-9748-2. |
[17] | J. Ryan, Exploiting Superconvergence Through Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering, Mathematical Programming Computation, 2015, 106, 87–102. DOI: 10.1016/0003-4916(63)90068-X. |
[18] | J. Ryan and J. Docampo-Sanchez, One-dimensional line SIAC filtering for multi-dimensions: applications to streamline visualization, Numerical Methods for Flows, 2020, 145–154. DOI: 10.1007/978-3-030-30705-9_13. |
[19] | C. Shu, Discontinuous Galerkin method for time dependent problems: survey and recent developments. recent developments in discontinuous Galerkin finite element methods for partial differential equations (2012 John H. Barrett Memorial Lectures), The IMA Volumes in Mathematics and Its Applications, 2014, 157, 25–62. DOI: 10.1007/978-3-319-01818-8_2. |
[20] |
C. Shu and J. K. Ryan, On a one-sided post-processing technique for the discontinuous Galerkin methods, Methods Applied Analysis, 2003, 10(23), 295–308. DOI: |
[21] | M. Steffen, S. Curtis, R. Kirby and J. Ryan, Investigation of Smoothness-Increasing Accuracy-Conserving filters for improving streamline integration through discontinuous fields, IEEE Transactions on Visualization and Computer Graphics, 2008, 14(3), 680–692. DOI: 10.1007/978-3-319-19800-2_6. |
[22] | Y. Xu and C. Shu, Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations, Computation Methods Applied Mechanical Energy, 2007, 196, 3805–3822. DOI: 10.1016/j.cma.2006.10.043. |
[23] | Y. Yang and C. Shu, Discontinuous Galerkin method for hyperbolic equations involving δ-singularities: Negative-order norm error estimates and applications, Numerical Mathematics, 2013, 124, 753–781. DOI: 10.1007/s00211-013-0526-8. |
[24] | Q. Zhang and C. Shu, Error estimates for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data, Numerical Mathematics, 2014, 126(4), 703–74. DOI:10.1007/s00211-013-0573-1. |