2023 Volume 13 Issue 1
Article Contents

Enyu Fan, Changpin Li, Zhiqiang Li. NUMERICAL METHODS FOR THE CAPUTO-TYPE FRACTIONAL DERIVATIVE WITH AN EXPONENTIAL KERNEL[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 376-423. doi: 10.11948/20220177
Citation: Enyu Fan, Changpin Li, Zhiqiang Li. NUMERICAL METHODS FOR THE CAPUTO-TYPE FRACTIONAL DERIVATIVE WITH AN EXPONENTIAL KERNEL[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 376-423. doi: 10.11948/20220177

NUMERICAL METHODS FOR THE CAPUTO-TYPE FRACTIONAL DERIVATIVE WITH AN EXPONENTIAL KERNEL

  • Corresponding author: Email: lcp@shu.edu.cn(C. Li) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 12271339)
  • In the present article, several typical numerical discrete formulas for the Caputo-type fractional derivative with an exponential kernel (call "exponential Caputo derivative" for brevity) with order $ \alpha\in(0,1) $ and $ \alpha\in(1,2) $ are constructed, which are L1, L1-2, L2-1$ _\sigma $ formulas for $ \alpha\in(0,1) $, and H2N2 and L2$ _{1} $ formulas for $ \alpha\in(1,2) $, respectively. And the estimates of the truncation errors are determined. Meanwhile, the properties of the coefficients in these formulas are studied. Finally, some numerical examples are displayed which support the theoretical analysis.

    MSC: 26A33, 65D25
  • 加载中
  • [1] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 2015, 280, 424-438. doi: 10.1016/j.jcp.2014.09.031

    CrossRef Google Scholar

    [2] E. G. M. Elmahdi and J. Huang, Efficient numerical solution of two-dimensional time-space fractional nonlinear diffusion-wave equations with initial singularity, J. Appl. Anal. Comput., 2022, 12(2), 831-849.

    Google Scholar

    [3] G. Gao, Z. Sun and H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 2014, 259, 33-50. doi: 10.1016/j.jcp.2013.11.017

    CrossRef Google Scholar

    [4] C. Guo and S. Fang, Crank-Nicolson difference scheme for the derivative nonlinear Schrödinger equation with the riesz space fractional derivative, J. Appl. Anal. Comput., 2021, 11(3), 1074-1094.

    Google Scholar

    [5] J. Guo and T. Wang, Fractional Hermite degenerate kernel method for linear Fredholm integral equations involving endpoint weak singularities, J. Appl. Anal. Comput., 2020, 10(5), 1918-1936.

    Google Scholar

    [6] C. Li and Z. Li, On blow-up for a time-space fractional partial differential equation with exponential kernel in temporal derivative, J. Math. Sci., DOI: 10.1007/s10958-022-05894-w.

    CrossRef Google Scholar

    [7] C. Li and Z. Li, Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation, J. Nonlinear Sci., 2021, 31(2), 31. doi: 10.1007/s00332-021-09691-8

    CrossRef Google Scholar

    [8] C. Li and Z. Li, Stability and ψ-algebraic decay of the solution to ψ-fractional differential system, Int. J. Nonlinear Sci. Numer. Simul., DOI: 10.1515/ijnsns-2021-0189.

    CrossRef Google Scholar

    [9] C. Li, Z. Li and C. Yin, Which kind of fractional partial differential equations has solution with exponential asymptotics? In: A. Dzielinski, D. Sierociuk, P. Ostalczyk (eds), Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA'21), ICFDA 2021, Lecture Notes in Networks and Systems, vol 452, pp. 112-117, Springer, Cham, 2022.

    Google Scholar

    [10] C. Li and F. Zeng, Numerical Methods for Fractional Calculus, CRC Press, Boca Raton, 2015.

    Google Scholar

    [11] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 2007, 225(2), 1533-1552. doi: 10.1016/j.jcp.2007.02.001

    CrossRef Google Scholar

    [12] Y. Ma, F. Zhang and C. Li, The asymptotics of the solutions to the anomalous diffusion equations, Comput. Math. Appl., 2013, 66(5), 682-692. doi: 10.1016/j.camwa.2013.01.032

    CrossRef Google Scholar

    [13] D. Matignon, Stability results for fractional differential equations with applications to control processing, Proceedings of the IMACS-SMC, 1996, 2(1), 963-968.

    Google Scholar

    [14] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

    Google Scholar

    [15] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [16] D. Qian, C. Li, R. P. Agarwal and P. J. Y. Wong, Stability analysis of fractional differential system with Riemann-Liouville derivative, Math. Comput. Model., 2010, 52(5-6), 862-847. doi: 10.1016/j.mcm.2010.05.016

    CrossRef Google Scholar

    [17] S. Sadiq and M. ur Rehman, ψ-shifted operational matrix scheme for fractional partial differential equations, J. Appl. Anal. Comput., 2022, 12(2), 497-516.

    Google Scholar

    [18] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland, 1993.

    Google Scholar

    [19] J. Shen, C. Li and Z. Sun, An H2N2 interpolation for Caputo derivative with order in (1, 2) and its application to time fractional wave equation in more than one space dimension, J. Sci. Comput., 2020, 83(2), 38. doi: 10.1007/s10915-020-01219-8

    CrossRef Google Scholar

    [20] J. V. C. Sousa, L. S. Tavares and C. E. T. Ledesma, A variational approach for a problem involving a ψ-Hilfer fractional operator, J. Appl. Anal. Comput., 2021, 11(3), 1610-1630.

    Google Scholar

    [21] Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 2006, 56, 193-209. doi: 10.1016/j.apnum.2005.03.003

    CrossRef Google Scholar

Figures(1)  /  Tables(5)

Article Metrics

Article views(1797) PDF downloads(502) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint