2023 Volume 13 Issue 6
Article Contents

Fanwei Meng, Lin Chen, Xianchao Zhang, Yancong Xu. TRANSMISSION DYNAMICS OF A CHAGAS DISEASE MODEL WITH STANDARD INCIDENCE INFECTION[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3422-3441. doi: 10.11948/20230071
Citation: Fanwei Meng, Lin Chen, Xianchao Zhang, Yancong Xu. TRANSMISSION DYNAMICS OF A CHAGAS DISEASE MODEL WITH STANDARD INCIDENCE INFECTION[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3422-3441. doi: 10.11948/20230071

TRANSMISSION DYNAMICS OF A CHAGAS DISEASE MODEL WITH STANDARD INCIDENCE INFECTION

  • In this paper, an insect-parasite-host model with Ricker’s type reproduction of triatomines and the standard incidence rate of the interaction between insects and hosts is formulated to study the transmission dynamics of Chagas disease. Two thresholds of the ecological basic reproduction number of triatomines and the epidemiological basic reproduction number of Chagas disease are derived, which determine the dynamics of this model. As a result, the existence of equilibria and the local/global stabilities of the equilibrium are accordingly obtained. Moreover, backward bifurcation, forward bifurcation and saddle-node bifurcation are also shown analytically and numerically. Biologically speaking, Chagas disease may undergo outbreak if the number of bites of per triatomine bug per unit time or the transmission probability from infected bugs to susceptible competent hosts per bite increase.

    MSC: 34A34, 34A12, 34C23
  • 加载中
  • [1] M. A. Acuña-Zegarra, D. Olmos-Liceaga and J. X. Velasco-Hernš¢ndez, The role of animal grazing in the spread of Chagas disease, J. Theo. Biol., 2018, 457, 19–28. doi: 10.1016/j.jtbi.2018.08.025

    CrossRef Google Scholar

    [2] C. M. Barbu, E. Dumonteil and S. Gourbiššre, Optimization of control strategies for non-domiciliated triatoma dimidiata, chagas disease vector in the Yucatš¢n Peninsula, Mexico, Plos. Negl. Trop. Dis., 2009, 3(4), e416. doi: 10.1371/journal.pntd.0000416

    CrossRef Google Scholar

    [3] C. M. Barbu, A. Hong, J. M. Manne, D. S. Small, J. E. Quintanilla Calderš®n, K. Sethuraman, V. Quispe-Machaca, J. Ancca-Juš¢rez, J. G. Cornejo, F. S. del Carpio and M. Chavez, The effects of city streets on an urban disease vector, Plos. Comput. Biol., 2013, 9(1), e1002801. doi: 10.1371/journal.pcbi.1002801

    CrossRef Google Scholar

    [4] P. Bernard, B. Carolina, S. Eric, R. Isabella, V. Rafael, G. Joaquim, P. M. Jesus, M. Silvia, G. Silvia and P. Ana, The benefit trial: Where do we go from here?, Plos. Negl. Trop. Dis., 2016, 10(2), e0004343. doi: 10.1371/journal.pntd.0004343

    CrossRef Google Scholar

    [5] L. Chen, X. T. Wu, Y. C. Xu and L. B. Rong, Modelling the dynamics of Trypanosoma rangeli and triatomine bug with logistic growth of vector and systemic transmission, Math. Biosci. Eng., 2022, 19(8).

    Google Scholar

    [6] A. B. B. de Oliveira, K. C. C. Alevi, C. H. L. Imperador, F. F. Madeira and M. T. V. de Azeredo Oliveira, Parasite-vector interaction of Chagas disease: A mini-review, Am. J. Trop. Med. Hyg., 2018, 98(3), 653. doi: 10.4269/ajtmh.17-0657

    CrossRef Google Scholar

    [7] E. J. Doedel, A. R. Champneys, F. Dercole, T. F. Fairgrieve, Yu A. Kuznetsov, B. Oldeman, R. C. Paffenroth, B. Sandstede, X. J. Wang and C. H. Zhang, AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, US, 2007.

    Google Scholar

    [8] P. Dreessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002, 180, 29–48. doi: 10.1016/S0025-5564(02)00108-6

    CrossRef Google Scholar

    [9] A. M. Ferreira, L. I. Santos, E. C. Sabino, A. L P. Ribeiro, L. C. Oliveira-da Silva, R. F. Damasceno, M. F. S. V D’Angelo, M. D. C. P Nunes and D. S. A. Haikal, Two-year death prediction models among patients with Chagas Disease using machine learning-based methods, Plos. Negl. Trop. Dis., 2022, 16, e0010356. doi: 10.1371/journal.pntd.0010356

    CrossRef Google Scholar

    [10] F. Lardeux, Niche invasion, competition and coexistence amongst wild and domestic Bolivian populations of Chagas vector Triatoma infestans (Hemiptera, Reduviidae, Triatominae), C. R. Biol., 2013, 336(4), 183–193. doi: 10.1016/j.crvi.2013.05.003

    CrossRef Google Scholar

    [11] R. Gurgel-Goncalves, C. Galvao, J. Costa and A. T. Peterson, Geographic distribution of Chagas disease vectors in Brazil based on ecological niche modeling, J. Trop. Med., 2012, 2012(1), 705326.

    Google Scholar

    [12] R. E. Gürtler, A. L. Ceballos, P. O-Krasnowski, L. A. Lanati, R. Stariolo and U. Kitron, Strong host-feeding preferences of the vector triatoma infestans modified by vector density: Implications for the epidemiology of Chagas disease, Plos. Negl. Trop. Dis., 2009, 3(5), e447. doi: 10.1371/journal.pntd.0000447

    CrossRef Google Scholar

    [13] R. E. Gürtler, U. Kitron, M. C. Cecere, E. L. Segura and J. E. Cohen, Sustainable vector control and management of Chagas disease in the Gran Chaco, Argentina, Proc. Natl. Acad. Sci. USA., 2007, 104(41), 16194–16199. doi: 10.1073/pnas.0700863104

    CrossRef Google Scholar

    [14] D. Huang, Y. Tang and W. Zhang, Distributuion of roots of cubic equations, J. Korea Soc. Math. Educ. ser. b Pure Appl. math, 2010, 12(7), 185–188.

    Google Scholar

    [15] K. Imai, T. Murakami, K. Misawa, Y Fujikura, A. Kawana, N. Tarumoto, S. Maesaki and T. Maeda, Optimization and evaluation of the ARCHITECT Chagas assay and in-house ELISA for Chagas disease in clinical settings in Japan, Parasitol. int., 2021, 80, 102221. doi: 10.1016/j.parint.2020.102221

    CrossRef Google Scholar

    [16] H. Inaba and H. Sekine, A mathematical model for Chagas disease with infection-age-dependent infectivity, Math. Biosci., 2004, 190(1), 39–69. doi: 10.1016/j.mbs.2004.02.004

    CrossRef Google Scholar

    [17] C. D. O. R. Júnior, P. D. G. Martinez, R. A. A. Ferreira, P. J. Koovits, B. M. Soares, L. L. Ferreira, S. Michelan-Duarte, R. C. Chelucci, A. D. Andricopulo, A. Matheeussen, et al., Hit-to-lead optimization of a 2-aminobenzimidazole series as new candidates for chagas disease, Eur. J. Med. Chem., 2023, 246, 114925. doi: 10.1016/j.ejmech.2022.114925

    CrossRef Google Scholar

    [18] C. M. Kribs and C. Mitchell, Host switching vs. host sharing in overlapping sylvatic Trypanosoma cruzi transmission cycles, J. Bio. Dynam., 2015, 9(1), 1–31.

    Google Scholar

    [19] B. Y. Lee, K. M. Bacon, M. E. Bottazzi and P. J. Hotez, Global economic burden of Chagas disease: A computational simulation model, Lancet Infect. Dis., 2013, 13(4), 342–348. doi: 10.1016/S1473-3099(13)70002-1

    CrossRef Google Scholar

    [20] B. Y. Lee, K. M. Bacon, A. R. Wateska, M. E. Bottazzi, E. Dumonteil and P. J. Hotez, Modeling the economic value of a Chagas’ disease therapeutic vaccine, Hum. Vaccin. Immunother., 2012, 8(9), 1293–1301. doi: 10.4161/hv.20966

    CrossRef Google Scholar

    [21] B. Y. Lee, S. M. Bartsch, L. Skrip, D. L. Hertenstein and A. Galvani, Are the London Declaration’s 2020 goals sufficient to control Chagas disease?: Modeling scenarios for the Yucatan Peninsula, Plos. Negl. Trop. Dis., 2018, 12(3), e0006337. doi: 10.1371/journal.pntd.0006337

    CrossRef Google Scholar

    [22] M. Z. Levy, F. S. M. Chavez, J. G. Cornejo, del Carpio, D. A. Vilhena, F. E. Mckenzie and J. B. Plotkin, Rational spatio-temporal strategies for controlling a Chagas disease vector in urban environments, J. R. Soc. Interface., 2010, 7(48), 1061–1070. doi: 10.1098/rsif.2009.0479

    CrossRef Google Scholar

    [23] W. H. Organization, Chagas disease in Latin America: An epidemiological update based on 2010 estimates, Wkly. Epidemiol. Rec., 2015, 90(6), 33–43.

    Google Scholar

    [24] J. K. Peterson, S. M. Bartsch, B. Y. Lee and A. P. Dobson, Broad patterns in domestic vector-borne Trypanosoma cruzi transmission dynamics: Synanthropic animals and vector control, Parasite. Vector., 2015, 8, 537. doi: 10.1186/s13071-015-1146-1

    CrossRef Google Scholar

    [25] P. J. Plourde, K. Kadkhoda and M. Ndao, Congenitally transmitted Chagas disease in Canada: a family cluster, Can. Med. Assoc. J., 2017, 189(48), E1489–E1492. doi: 10.1503/cmaj.170648

    CrossRef Google Scholar

    [26] J. E. Rabinovich, J. A. Leal and de Piñero D. Feliciangeli, Domiciliary biting frequency and blood ingestion of the Chagas’s disease vector Rhodnius prolixus Ståhl (Hemiptera: Reduviidae), in Venezuela, T. Roy. Soc. Trop. Med. H., 1979, 3, 272–283.

    Google Scholar

    [27] A. Requena-Mndez, E. Aldasoro, E. De Lazzari, E. Sicuri, M. Brown, D. A. J. Moore, J. Gascon, J. M. and M. M. Rodrigues, Prevalence of Chagas disease in Latin-American migrants living in Europe: A systematic review and meta-analysis, Plos. Negl. Trop. Dis., 2015, 9(2), e0003540. doi: 10.1371/journal.pntd.0003540

    CrossRef Google Scholar

    [28] P. Rodari, F. Tamarozzi, S. Tais, M. Degani, F. Perandin, D. Buonfrate, E. Nicastri, L. Lepore, M. L. Giancola, S. Carrara and others, Prevalence of Chagas disease and strongyloidiasis among HIV-infected Latin American immigrants in Italy–The CHILI study, Tra. Med. Infect. Di., 2022, 48, 102324. doi: 10.1016/j.tmaid.2022.102324

    CrossRef Google Scholar

    [29] M. Saavedra, A. Bacigalupo, M. V. Barrera, M. J. Vergara, B. Álvarez-Duhart, C. Muñoz-San Martín, R. Solís and P. E. Cattan, Trypanosoma cruzi infection in the wild Chagas disease vector, Mepraia spinolai: Parasitic load, discrete typing units, and blood meal sources, Acta Tropica, 2022, 229, 106365. doi: 10.1016/j.actatropica.2022.106365

    CrossRef Google Scholar

    [30] C. J. Schofield, N. G. Williams and T. F. D. C. Marshall, Density-dependent perception of triatomine bug bites, Annals of Tropical Medicine. Parasitology., 1986, 80(3), 351–358. doi: 10.1080/00034983.1986.11812028

    CrossRef Google Scholar

    [31] H. Smith, Monotone dynamical systems : an introduction to the theory of competitive and cooperative systems, Ams Ebooks Program, 1995, 41(5), 174.

    Google Scholar

    [32] L. Stevens, D. M. Rizzo, D. E. Lucero and J. C. Pizarro, Household model of Chagas disease vectors (Hemiptera: Reduviidae) considering domestic, peridomestic, and sylvatic vector populations, J. Med. Entomol., 2013, 50(4), 907–915. doi: 10.1603/ME12096

    CrossRef Google Scholar

    [33] N. Tomasini, P. G. Ragone, S. Gourbiere, J. P. Aparicio and P. Diosque, Epidemiological modeling of Trypanosoma cruzi: Low stercorarian transmission and failure of host adaptive immunity explain the frequency of mixed infections in humans, Plos. Comput. Biol., 2017, 13.

    Google Scholar

    [34] J. X. Velasco-Hernndez, An epidemiological model for the dynamics of Chagas’ disease., Biosystems, 1991, 26(2), 127–134. doi: 10.1016/0303-2647(91)90043-K

    CrossRef Google Scholar

    [35] J. X. Velasco-Hernndez, A model for Chagas disease involving transmission by vectors and blood transfusion, Theor. Popul. Biol., 1994, 46(1), 1–31. doi: 10.1006/tpbi.1994.1017

    CrossRef Google Scholar

    [36] X. T. Wu, D. Z. Gao, Z. L. Song and J. H. Wu, Modelling triatomine bug population and Trypanosoma rangeli transmission dynamics: co-feeding, pathogenic effect and linkage with chagas disease, Math. Biosci., 2020, 324.

    Google Scholar

    [37] Y. C. Xu, Z. R. Zhu, Y. Yang and F. W. Meng, Vectored immunoprophylaxis and cell-to-cell transmission in HIV dynamics, Inter. J. Bifur. & Chaos, 2020, 30(13), 1–19.

    Google Scholar

    [38] W. J. Zhang, L. M. Wahl and P. Yu, Backward bifurcations, turning points and rich dynamics in simple disease models., J. Math. Biol., 2016, 73(4), 1–30.

    Google Scholar

Figures(7)  /  Tables(2)

Article Metrics

Article views(1338) PDF downloads(261) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint