2019 Volume 9 Issue 3
Article Contents

Jing Jiang, Yixian Gao, Weipeng Zhang, Lan Yin. BIFURCATION OF TRAVELING WAVE SOLUTIONS OF THE $K(M, N)$ EQUATION WITH GENERALIZED EVOLUTION TERM[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 853-863. doi: 10.11948/2156-907X.20180035
Citation: Jing Jiang, Yixian Gao, Weipeng Zhang, Lan Yin. BIFURCATION OF TRAVELING WAVE SOLUTIONS OF THE $K(M, N)$ EQUATION WITH GENERALIZED EVOLUTION TERM[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 853-863. doi: 10.11948/2156-907X.20180035

BIFURCATION OF TRAVELING WAVE SOLUTIONS OF THE $K(M, N)$ EQUATION WITH GENERALIZED EVOLUTION TERM

  • In this paper, by using bifurcation theory and methods of plane dynamic system, we investigate the bifurcations of the traveling wave system corresponding to the $K(m, n)$ equation with generalized evolution term. Under different parameter conditions, some exact explicit parametric representations of traveling wave solution are obtained.
    MSC: 34C23, 34C25, 35C07, 74J35
  • 加载中
  • [1] A. Biswas, 1-soliton solution of the $K(m, n)$ equation with generalized evolution, Phys. Lett. A, 2008, 372(25), 4601-4602. doi: 10.1016/j.physleta.2008.05.002

    CrossRef $K(m, n)$ equation with generalized evolution" target="_blank">Google Scholar

    [2] P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals For Engineers and Scientists, Springer, Berlin, 1971.

    Google Scholar

    [3] A. Y. Chen and J. B. Li, Single peak solitary wave solutions for the osmosis $K(2, 2)$ equation under inhomogeneous boundary condition, J. Math. Anal. Appl., 2010, 369(2), 758-766. doi: 10.1016/j.jmaa.2010.04.018

    CrossRef $K(2, 2)$ equation under inhomogeneous boundary condition" target="_blank">Google Scholar

    [4] Y. G. Fu and J. B. Li, Exact stationary-wave solutions in the standard model of the Kerr-nonlinear optical fiber with the Bragg grating, J. Appl. Anal. Comput., 2017, 7(3), 1177-1184.

    Google Scholar

    [5] M. A. Han, L. J. Zhang, Y. Wang and C. M. Khalique, The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal. Real World Appl., 2019, 47, 236-250. doi: 10.1016/j.nonrwa.2018.10.012

    CrossRef Google Scholar

    [6] T. L. He, Bifurcation of traveling wave solutions of (2+1) dimensional Konopelchenko-Dubrovsky equations, Appl. Math. Comput., 2008, 204(2), 773-783.

    Google Scholar

    [7] T. D. Leta and J. B. Li, Existence of kink and unbounded traveling wave solutions of the Casimir equation for the Ito system, J. Appl. Anal. Comput., 2017, 7(2), 632-643.

    Google Scholar

    [8] J. B. Li, Dynamical understanding of loop soliton solutions for several nonlinear wave equations, Sci. China Ser. A, 2007, 50(6), 773-785. doi: 10.1007/s11425-007-0039-y

    CrossRef Google Scholar

    [9] J. B. Li, Exact explicit peakon and periodic cusp wave solutions for several nonlinear wave equation, J. Dyn. Diff. Equ., 2008, 20(4), 909-922. doi: 10.1007/s10884-008-9114-5

    CrossRef Google Scholar

    [10] J. B. Li, Notes on exact travelling wave solutions for a long wave-short wave mode, J. Appl. Anal. Comput., 2015, 5(1), 138-140.

    Google Scholar

    [11] J. B. Li and H. H. Dai, On the study of singular nonlinear traveling wave equations: dynamical system approach, Science Press, Beijing, 2007.

    Google Scholar

    [12] J. B. Li and Z. R. Liu, Smooth and non-smooth traveling waves in an nonlinearly dispersive equation, Appl. Math. Model., 2000, 25(1), 41-56.

    Google Scholar

    [13] J. B. Li and Z. R. Liu, Traveling wave solutions for a class of nonlinear dispersive equations, China. Ann. Math. B, 2002, 23(3), 397-418. doi: 10.1142/S0252959902000365

    CrossRef Google Scholar

    [14] J. B. Li and J. W. Shen, Traveling wave solutions in a model of the helix polypeptide chains, Chaos, Soliton and Fractals, 2004, 20(4), 827-841. doi: 10.1016/j.chaos.2003.09.007

    CrossRef Google Scholar

    [15] J. B. Li and J. X. Zhang, Bifurcations of traveling wave solutions for the generalization form of the modified KdV equation, Chaos, Soliton and Fractals, 2004, 21(4), 899-913. doi: 10.1016/j.chaos.2003.12.026

    CrossRef Google Scholar

    [16] J. B. Li and Y. Zhang, Exact M/W-shape solitary wave solution determined by a singular traveling wave equation, Nonlinear Anal. Real World Appl., 2009, 10(3), 1797-1802. doi: 10.1016/j.nonrwa.2008.02.016

    CrossRef Google Scholar

    [17] J. B. Li and J. Q. Zhi, Explicit soliton solutions of the Kaup-Kupershmidt equation through the dynamical system approach, J. Appl. Anal. Comput., 2011, 1(2), 243-250.

    Google Scholar

    [18] P. Rosenau, On nonanalytic solitary waves formed by a nonlinear dispersion, Phys. Lett. A, 1997, 230, 305-318. doi: 10.1016/S0375-9601(97)00241-7

    CrossRef Google Scholar

    [19] P. Rosenau and J.M. Hyman, Compacton: solitons with finite wavelength, Phys. Rev. Lett., 1993, 70(5), 564-567. doi: 10.1103/PhysRevLett.70.564

    CrossRef Google Scholar

    [20] S. Q. Tang and M. Li, Bifurcations of traveling wave solutions in a class of generalized KdV equation, Appl. Math. Comput., 2006, 177(2), 589-596.

    Google Scholar

    [21] H. Triki and A. M. Wazwaz, Soliton solutions for (2+1)-dimensional and (3+1)-dimensional $K(m, n)$ equation, Appl. Math. Comput., 2009, 217(4), 1733-1740.

    $K(m, n)$ equation" target="_blank">Google Scholar

    [22] C. H. Xu and L. X. Tian, The bifurcation and peakon for $K(2, 2)$ equation with osmosis dispersion, Chaos, Soliton and Fractals, 2009, 40(2), 893-901. doi: 10.1016/j.chaos.2007.08.042

    CrossRef $K(2, 2)$ equation with osmosis dispersion" target="_blank">Google Scholar

    [23] L. J. Zhang, H. X. Chang and C. M. Khalique, Sub-manifold and traveling wave solutions of Ito's 5th-order mKdV equation, J. Appl. Anal. Comput., 2017, 7(4), 1417-1430.

    Google Scholar

    [24] L. J. Zhang and C. M. Khalique, Exact solitary wave and periodic wave solutions of the Kaup-Kuperschmidt equation, J. Appl. Anal. Comput., 2015, 5(3), 485-495.

    Google Scholar

    [25] L. J. Zhang and C. M. Khalique, Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete Contin. Dyn. Syst. Ser., 2018, 11(4), 777-790.

    Google Scholar

    [26] L. J. Zhang, Y. Wang, C. M. Khalique and Y. Z. Bai, Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Comput., 2018, 8(6), 1938-1958.

    Google Scholar

Figures(6)

Article Metrics

Article views(2051) PDF downloads(437) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint