2019 Volume 9 Issue 3
Article Contents

Amel Boulfoul, Amar Makhlouf, Nawal Mellahi. ON THE LIMIT CYCLES FOR A CLASS OF GENERALIZED KUKLES DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 864-883. doi: 10.11948/2156-907X.20180083
Citation: Amel Boulfoul, Amar Makhlouf, Nawal Mellahi. ON THE LIMIT CYCLES FOR A CLASS OF GENERALIZED KUKLES DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 864-883. doi: 10.11948/2156-907X.20180083

ON THE LIMIT CYCLES FOR A CLASS OF GENERALIZED KUKLES DIFFERENTIAL SYSTEMS

  • In this paper, we consider the limit cycles of a class of polynomial differential systems of the form $\dot{x}=-y, \hspace{0.2cm} \dot{y}=x-f(x)-g(x)y-h(x)y^{2}-l(x)y^{3}, $ where $f(x)=\epsilon f_{1}(x)+\epsilon^{2}f_{2}(x), $ $g(x)=\epsilon g_{1}(x)+\epsilon^{2}g_{2}(x), $ $h(x)=\epsilon h_{1}(x)+\epsilon^{2}h_{2}(x)$ and $l(x)=\epsilon l_{1}(x)+\epsilon^{2}l_{2}(x)$ where $f_{k}(x), $ $g_{k}(x), $ $h_{k}(x)$ and $l_{k}(x)$ have degree $n_{1}, $ $n_{2}, $ $n_{3}$ and $n_{4}, $ respectively for each $k=1, 2, $ and $\varepsilon$ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot{x}=-y, $ $\dot{y}=x$ using the averaging theory of first and second order.
    MSC: 34C29, 34C25, 47H11
  • 加载中
  • [1] M. Abramowitz and I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau Standards App. Math. Ser. 55, Washington, 1972.

    Google Scholar

    [2] A. Boulfoul and A. Makhlouf, Limit cycles of the generalized polynomial Liénard differential systems, Annals of Differential Equations, 2016, 3, 221-233.

    Google Scholar

    [3] A. Buica, J. P. Francoise and J. Llibre, Periodic solutions of nonlinear periodic differential systems with a small parameter, Commun. Pure Appl. Anal, 2007, 6(1), 103-111.

    Google Scholar

    [4] A. Buica and J. Llibre, Averaging methods for finding periodic orbits via Brouwer degree, Bull Sci Math., 2014, 128(1), 7-22.

    Google Scholar

    [5] J. Chavarriga, E. Sáez, I. Szántó and M. Grau, Coexistence limit cycles and invariant algebraic curves for a Kukles system, Nonlinear Anal., 2004, 59(5), 673-693. doi: 10.1016/j.na.2004.07.028

    CrossRef Google Scholar

    [6] J. Christopher and N. G. Lloyd, On the paper of X. Jin and D. Wang concerning the conditions for a centre in certain cubic systems, Bull. Lond. Math. Soc., 1990, 22(1), 5-12. doi: 10.1112/blms/22.1.5

    CrossRef Google Scholar

    [7] J. Giné, Conditions for the existence of a center for the Kukles homogeneous systems, Comput. Math. Appl, 2002, 43(11), 1261-1269.

    Google Scholar

    [8] J. Giné and X. Santallusia, Implementation of a new algorithm of computation of the Poincaré-Liapunov constants, J. Comput. Appl. Math., 2004, 166(2), 465-476.

    Google Scholar

    [9] A. A. Grin and K. R. Schneider, On the construction of a class of generalized Kukles systems having at most one limit cycle, J. Math. Anal. Appl., 2013, 408(2), 484-497. doi: 10.1016/j.jmaa.2013.05.052

    CrossRef Google Scholar

    [10] M. Han, V. G. Romanovski and X. Zhang, Equivalence of the Melnikov function method and the averaging method, Qualitative Theory of Dynamical Systems 2016, 15(2), 471-479. doi: 10.1007/s12346-015-0179-3

    CrossRef Google Scholar

    [11] M. Han, On the maximum number of periodic solution of piecewise smooth periodic equations by average method, Journal of Applied Analysis and Computation, 2017, 7(2), 788-794.

    Google Scholar

    [12] M. Han, G. Chen and C. Sun, On the Number of Limit Cycles in Near-Hamiltonian Polynomial Systems, International Journal of Bifurcation and Chaos, 2007, 17(6), 2033-2047. doi: 10.1142/S0218127407018208

    CrossRef Google Scholar

    [13] D. Hilbert, Mathematische Problems, Lecture in: Second Internat. Congr. Math. Paris 1900, Nachr. Ges. Wiss. Gttingen Math.Phys. ki, 1900, 5, 253-297; English transl. Bull. Amer. Math. Soc., 1902, 8, 437-479.

    Google Scholar

    [14] I. S. Kukles, Sur quelques cas de distinction entre un foyer et un centre, Dokl. Akad. Nauk.SSSR, 1944, 42, 208-211.

    Google Scholar

    [15] Z. E. Liu, E. Sáez and I. Szántó, Limit cycles and invariant parabola in a Kukles system of degree three, Acta Math. Sci. Ser. B Engl. Ed., 2008, 28(4), 865-869.

    Google Scholar

    [16] J. Llibre and A. C. Mereu, Limit cycles for generalized kukles polynomial differential systems, Nonlinear Analysis, 2011, 74(4), 1261-1271. doi: 10.1016/j.na.2010.09.064

    CrossRef Google Scholar

    [17] J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Applied Mathematical Sciences, Vol. 19. Springer-Verlag, New York, 1976.

    Google Scholar

    [18] N. Mellahi, A. Boulfoul and A. Makhlouf, Maximum Number of Limit Cycles for Generalized Kukles Polynomial Differential Systems, Differential Equations and Dynamical Systems, 2016. DOI: 10.1007/s12591-016-0300-3.

    Google Scholar

    [19] H. Poincaré, Memoire sur les Courbes Définies par Une Équation Différentielle, Jacques Gabay, Paris, 1993. Edit. Reprinted from the original papers published in the Journal de Mathématiques, 1881, 7, 375-422, 1882, 8, 251-2-96, 1885, 1, 167-244, and 1886, 2, 151-217.

    Google Scholar

    [20] C. Rousseau and B. Toni, Local bifurcations of critical periods in the reduced Kukles system, Canad. J. Math., 1997, 49(2), 338-358. doi: 10.4153/CJM-1997-017-4

    CrossRef Google Scholar

    [21] E. Sáez and I. Szántó, Coexistence of algebraic and nonalgebraic limit cycles in Kukles systems, Period. Math. Hungar., 2008, 56(1), 137-142. doi: 10.1007/s10998-008-5137-y

    CrossRef Google Scholar

    [22] A. P. Sadovskii, Cubic systems of nonlinear oscillations with seven limit cycles, Diff. Uravn. SSSR, 2003, 39(4), 472-481.

    Google Scholar

    [23] J. A. Sanders and F. Verhulst, Averaging methods in nonlinear dynamical systems, Applied Mathematical Sciences, 59. Springer-Verlag, New York, 1985.

    Google Scholar

    [24] F. Verhulst, Nonlinear Differential equations and Dynamical Systems, Universitext, Springer-Verlag, Berlin, 1996.

    Google Scholar

    [25] Y. Wu, G. Chen and X. Yang, Kukles system with two fine foci, Ann. Appl. Math., 1990, 15(4), 422-437.

    Google Scholar

    [26] H. Zang, T. Zhang, Y. C. Tian and M. O. Tadé, Limit cycles for the Kukles system, J. Dyn. Control Syst., 2008, 14(2), 283-298.

    Google Scholar

Article Metrics

Article views(2154) PDF downloads(561) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint