[1]
|
V. I. Arnold, Geometrical methods in the theory of ordinary difierential equations, Springer-Verlag, 1983.
Google Scholar
|
[2]
|
H. Bass, E. Connell and D. Wright, The Jacobian conjecture:reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc., 7(1982), 287-330.
Google Scholar
|
[3]
|
A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc., 13(1962), 200-203.
Google Scholar
|
[4]
|
B. Deng, G. H. Meisters and G. Zampieri, Conjugation for polynomial mappings, Z. angew Math Phys, 46(1995), 872-882.
Google Scholar
|
[5]
|
L. Dru_zkowski, An efiective approach to Keller's Jacobian conjecture, Math. Ann., 264(1983), 303-313.
Google Scholar
|
[6]
|
G. Gorni and G. Zampieri, On the existence of global analytic conjugations for polynomial mappings of Yagzhev type, Dept. of Math. Computer Science, University of Udine, preprint, 1995.
Google Scholar
|
[7]
|
O. H. Keller, Ganze Cremona trasformationen, Monatshefte für Mathematik und Physik, 47(1939), 299-306.
Google Scholar
|
[8]
|
G. H. Meisters, Inverting polynomial maps of n-space by solving difierential equations, in Fink, Miller, Kliemann, editors, Delay and Difierential Equations:Proceedings in Honour of George Seifert on his retirement, World Sci. Pub. Co., 1992.
Google Scholar
|
[9]
|
G. H. Meisters, Polyomorphisms conjugate to dilations, in Automorphisms of A-ne Spaces, A. van den Essen (ed.), Kluwer Academic Publishers, 1994
Google Scholar
|
[10]
|
D. J. Newman, One-one polynomial maps, Proc. Amer. Math. Soc., 11(1960), 867-870.
Google Scholar
|
[11]
|
W. Rudin, Injective polynomial maps are automorphisms, Amer. Math. Monthly., 102(1995), 540-543.
Google Scholar
|
[12]
|
A. van den Essen, A counterexample to a conjecture of Meisters, in Automorphisms of A-ne Spaces, A. van den Essen (ed.), Kluwer Academic Publishers, 1995.
Google Scholar
|
[13]
|
A. V. Yagzhev, Keller's problem, Siberian Math. J., 21(1980), 747-754.
Google Scholar
|
[14]
|
Cima, A., Van den Essen, A., Gasull, A., Hubbers, E., Ma nosas, F., A Polynomial Counterexample to the Markus-Yamabe Conjecture, Advances in Mathematics, 131(1997), 453-457.
Google Scholar
|
[15]
|
Van den Essen, A. and Hubbers, E., Chaotic Polynomial Automorphisms:Counterexamples to Several Conjectures, Advances in Appl. Math., 18(1997), 382-388.
Google Scholar
|
[16]
|
Van den Essen, A., Polynomial Automorphisms:and the Jacobian Conjecture, Progress in Mathematics,190, Birkhäuser Verlag, Basel-Boston-Berlin, 2000.
Google Scholar
|
[17]
|
Gorni, G. and G. Zampieri, On the existence of global analytic conjugations for polynomial mappings of Yagzhev type, J. math. anal. appl., 201(1996), 880-896.
Google Scholar
|
[18]
|
Hubbers, E.-M. G. M., Nilpotent Jacobians, Universal Press, Veenendaal, 1998. ISBN 90-9012143-9.
Google Scholar
|
[19]
|
Meisters G., A Biography of the Markus-Yamabe Conjecture, 1996, In:N. Mok (Ed.) Aspects of Mathematics:Algebra, Geometry and Several Complex Variables (The University of Hong Kong Mathematical Monographs Series, 1), pp.223-245, University of Hong Kong, Press, 2001. ISBN:9628646311.
Google Scholar
|
[20]
|
Rosay, J.-P. and W. Rudin, Holomorphic maps from Cn to Cn, Trans. Amer. Math. Soc., 310(1988), 47-86.
Google Scholar
|