2011 Volume 1 Issue 1
Article Contents

Brigita Ferčec, Xingwu Chen, Valery G. Romanovski. INTEGRABILITY CONDITIONS FOR COMPLEX SYSTEMS WITH HOMOGENEOUS QUINTIC NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2011, 1(1): 9-20. doi: 10.11948/2011002
Citation: Brigita Ferčec, Xingwu Chen, Valery G. Romanovski. INTEGRABILITY CONDITIONS FOR COMPLEX SYSTEMS WITH HOMOGENEOUS QUINTIC NONLINEARITIES[J]. Journal of Applied Analysis & Computation, 2011, 1(1): 9-20. doi: 10.11948/2011002

INTEGRABILITY CONDITIONS FOR COMPLEX SYSTEMS WITH HOMOGENEOUS QUINTIC NONLINEARITIES

  • In this paper we obtain conditions for the existence of a local analytic flrst integral for four eight-parameter families of quintic complex system. We also discuss computational di-culties arising in the study of the problem of integrability for these systems.
    MSC: 34C05;37C10
  • 加载中
  • [1] V. V. Amelkin, N. A. Lukashevich and A. P. Sadovskii, Nonlinear Oscillations in Second Order Systems, BSU, Minsk, 1982.

    Google Scholar

    [2] A. R. Chouikha, V. G. Romanovski and X. Chen, Isochronicity of analytic systems via Urabe's criteria, J. Phys. A:Math. Theor., 40(2007), 2313-2327.

    Google Scholar

    [3] C. Christopher, P. Mardešić and C. Rousseau, Normalizable, integrable, and linearizable saddle points for complex quadratic systems in C2, J. Dyn. Control Sys., 9(2003), 311-363.

    Google Scholar

    [4] C. Christopher and C. Li, Limit cycles of difierential equations. Advanced Courses in Mathematics, CRM Barcelona Birkhäuser Verlag, Basel, 2007.

    Google Scholar

    [5] C. Christopher and C. Rousseau, Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in C2, Publ.Mat., 45(2001), 95-123.

    Google Scholar

    [6] V. I. Danilyuk and A. S. Shubé, Distinguishing the cases of the center and focus for cubic systems with six parameters, in Russian, Izv. Akad. Nauk Moldav. SSR Mat., 3(1990), 18-21.

    Google Scholar

    [7] W. Decker, G. Pflster and H. A. Schönemann, Singular 2.0 library for computing the primary decomposition and radical of ideals, primdec. lib., 2001.

    Google Scholar

    [8] H. Dulac, Détermination et intégration d'une certaine classe d'équations difiérentielles ayant pour point singulier un centre, Bull. Sci. Math., 32(1908), 230-252.

    Google Scholar

    [9] J. Gine and V. G. Romanovski, Integrability conditions for Lotka-Volterra planar complex quintic systems, Nonlinear Analysis:Real World Applications, In Press, Corrected Proof, Available online 12 June 2009.

    Google Scholar

    [10] P. Gianni, B. Trager and G. Zacharias, Gröbner bases and primary decomposition of polynomials, J. Symbolic Comput., 6(1988), 146-167.

    Google Scholar

    [11] Y. Liu, J. Li and W. Huang, Singular point values, center problem and bifurcations of limit cycles of two dimensional difierential autonomous systems, Science Press, Beijing, 2008.

    Google Scholar

    [12] Y. Liu, Formulas of values of singular point and the integrability conditions for a class of cubic system, M(3) ≥ 7. Chinese Sci. Bull., 35(1990), 1241-1245.

    Google Scholar

    [13] Y. Liu and J. Li, Theory of values of singular point in complex autonomous difierential system, Science in China:Series A, 33(1990), 10-24.

    Google Scholar

    [14] V. G. Romanovski, Time-Reversibility in 2-Dim Systems, Open Syst. Inf. Dyn., 15(2008), 359-370.

    Google Scholar

    [15] V. Romanovski and D. Shafer, Time-reversibility in two-dimensional polynomial systems, In:Wang, Dongming, Zheng, Zhiming (Eds.). Difierential equations with symbolic computations, (Trends in mathematics). Basel; Boston:Birkhäuser, 2005.

    Google Scholar

    [16] V. G. Romanovski and D. S. Shafer, The Center and Cyclicity Problems:A Computational Algebra Approach, Birkhäuser, Boston, 2009.

    Google Scholar

    [17] A. P. Sadovskii, Holomorphic integrals of a certain system of difierential equations, Difier. Uravn., 10(1974), 558-560; Difier. Equ., 10(1974), 425-427.

    Google Scholar

    [18] P. S. Wang, M. J. T. Guy and J. H. Davenport, P-adic reconstruction of rational numbers, SIGSAM Bull., 16(1982), 2-3.

    Google Scholar

Article Metrics

Article views(1503) PDF downloads(696) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint