[1]
|
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM. Rev., 18(1976), 620-709.
Google Scholar
|
[2]
|
H. Amann, On the number of solutions of nonlinear equations in ordered Banach spaces, J. Functional Analysis, 11(1972), 346-384.
Google Scholar
|
[3]
|
H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indeflnite elliptic problems, J. Difierential Equations, 146(1998), 336-374.
Google Scholar
|
[4]
|
A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14(1973), 349-381.
Google Scholar
|
[5]
|
H. Berestycki and P. L. Lions, Some applications of the method of super and subsolutions, in Bifurcation and Nonlinear Eigenvalue problems, Lecure Notes in Mathematics 782, Springer-Verlag, Berlin, 1980, 16-41.
Google Scholar
|
[6]
|
E. N. Dancer, On the principal eigenvalue of linear cooperating elliptic systems with small difiusion, J. Evolution Equations, 9(2009), 419-428.
Google Scholar
|
[7]
|
D. G. de Figueiredo and B. Sirakov, On the Ambrosetti-Prodi problem for nonvariational elliptic systems, J. Difierential Equations, 240(2007), 357-374.
Google Scholar
|
[8]
|
D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988.
Google Scholar
|
[9]
|
D. D. Hai, Existence and uniqueness of solutions for quasilinear elliptic systems, Proc. Amer. Math. Soc., 133(2005), 223-228.
Google Scholar
|
[10]
|
D. D. Hai and R. Shivaji, An existence result on positive solutions for a class of semilinear elliptic systems, Proc. Edinb. Math. Soc., Ser. A, 134(2004), 137-141.
Google Scholar
|
[11]
|
D. D. Hai and R. Shivaji, An existence result for a class of p-Laplacian systems, Nonlinear Anal., 56(2004), 1007-1010.
Google Scholar
|
[12]
|
D. D. Hai and H. Wang, Nontrivial solutions for p-laplacian systems, J. Math. Anal. Appl., 330(2007), 186-194.
Google Scholar
|
[13]
|
M. A. Krasnosel'skii, Positive Solutions of Operator Equations, P. Noordhofi, Groningen, The Netherlands, 1964.
Google Scholar
|
[14]
|
M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl., 10(1962), 199-325.
Google Scholar
|
[15]
|
K. Q. Lan, Nonzero positive solutions of systems of elliptic boundary value problems, accepted for publication in Proc. Amer. Math. Soc.
Google Scholar
|
[16]
|
K. Q. Lan, A variational inequality theory for demicontinuous S-contractive maps with applications to semilinear elliptic inequalities, J. Difierential Equations, 246(2009), 909-928.
Google Scholar
|
[17]
|
K. Q. Lan, Multiple positive solutions of semilinear difierential equations with singularities, J. London Math. Soc., 63(2001), 690-704.
Google Scholar
|
[18]
|
K. Q. Lan and J. R. L. Webb, Positive solutions of semilinear difierential equations with singularities, J. Difierential Equations, 148(1998), 407-421.
Google Scholar
|
[19]
|
P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24(1982), 441-467
Google Scholar
|
[20]
|
Z. Liu, Positive solutions of superlinear elliptic equations, J. Functional Analysis, 167(1999), 370-398.
Google Scholar
|
[21]
|
C. Miranda, Partial Difierential Equations of Elliptic Type, Springer-Verlag, New York, 1970.
Google Scholar
|
[22]
|
R. D. Nussbaum, Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem, Fixed point theory (eds. E. Fadell and G. Fournier; Springer, 1981), Lecture Notes in Math., 886, 309-330.
Google Scholar
|
[23]
|
B. Sirakov, Some estimates and maximum principles for weakly coupled systems of elliptic PDE, Nonlinear Anal., 70(2009), 3039-3046.
Google Scholar
|
[24]
|
H. Wang, An existence theorem for quasilinear systems, Proc. Edinb. Math. Soc., Ser. A, 49(2006), 505-511.
Google Scholar
|
[25]
|
J. R. L. Webb and K. Q. Lan, Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal., 27(2006), 91-116.
Google Scholar
|