[1]
|
A. Campillo and M. M. Carnicer, Proximity inequalities and bounds for the degree of invariant curves by foliations of PC2, Trans. Amer. Math. Soc., 349(1997), 2211-2228.
Google Scholar
|
[2]
|
M.M. Carnicer, The Poincaré problem in the nondicritical case, Annals of Math., 140(1994), 289-294.
Google Scholar
|
[3]
|
D. Cerveau and A. Lins Neto, Holomorphic foliations in CP(2) having an invariant algebraic curve, Ann. Inst. Fourier, 41(1991), 883-903.
Google Scholar
|
[4]
|
J. Chavarriga, H. Giacomini, J. Giné, and J. Llibre, On the integrability of two-dimensional flows, J. Difierential Equations, 157(1999), 163-182.
Google Scholar
|
[5]
|
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Darboux integrability and the inverse integrating factor, J. Difierential Equations, 194(2003), 116-139.
Google Scholar
|
[6]
|
J. Chavarriga and M. Grau, A Family of non-Darboux integrable quadratic polynomial difierential systems with algebraic solutions of arbitrarily high degree, Applied Math. Letters, 16(2003), 833-837.
Google Scholar
|
[7]
|
C.J. Christopher, Invariant algebraic curves and conditions for a center, Proc. Roy. Soc. Edinburgh, 124A (1994), 1209-1229.
Google Scholar
|
[8]
|
C. Christopher, Liouvillian flrst integrals of second order polynomial difierential equations, Electron. J. Difierential Equations, 49(1999), 1-7.
Google Scholar
|
[9]
|
C. Christopher and J. Llibre, Algebraic aspects of integrability for polynomial systems, Qualitative Theory of Dynamical Systems, 1(1999), 71-95.
Google Scholar
|
[10]
|
C. Christopher and J. Llibre, Integrability via invariant algebraic curves for planar polynomial difierential systems, Annals of Difierential Equations, 16(2000), 5-19.
Google Scholar
|
[11]
|
C. Christopher and J. Llibre, A family of quadratic polynomial difierential systems with invariant algebraic curves of arbitrarily high degree without rational flrst integrals, Proc. Amer. Math. Soc., 130(2002), 2025-2030.
Google Scholar
|
[12]
|
C. Christopher, J. Llibre and J. V. Pereira, Multiplicity of invariant algebraic curves in polynomial vector flelds, Paciflc J. Math., 229(2007), 63-117.
Google Scholar
|
[13]
|
A. Cima, J. Llibre, Bounded polynomial systems, Trans. Amer. Math. Soc., 318(1990), 557-579.
Google Scholar
|
[14]
|
G. Darboux, Mémoire sur les équations difiérentielles algébriques du premier ordre et du premier degré (Mélanges), Bull. Sci. Math. 2ème série 2(1878), 60-96; 123-144; 151-200.
Google Scholar
|
[15]
|
G. Darboux, De l'emploi des solutions particulières algébriques dans l'intégration des systèmes d'équations difiérentielles algébriques, C. R. Math. Acad. Sci. Paris, 86(1878), 1012-1014.
Google Scholar
|
[16]
|
V. A. Dobrovol'skii, N. V. Lokot' and J.-M Strelcyn, Mikhail Nikolaevich Lagutinskii (1871-1915):un mathématicien méconnu, Historia Math., 25(1998), 245-264.
Google Scholar
|
[17]
|
F. Dumortier, J. Llibre and J. C. Artés, Qualitative theory of planar difierential systems, UniversiText, Springer-Verlag, New York, 2006.
Google Scholar
|
[18]
|
J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris, 1992.
Google Scholar
|
[19]
|
A. Ferragut, J. Llibre and A. Mahdi, Polynomial inverse integrating factors for polynomial vector flelds, Discrete Contin. Dyn. Syst., 17(2007), 387-395.
Google Scholar
|
[20]
|
J. Giné and J. Llibre, A family of isochronous foci with Darboux flrst integral, Paciflc J. Math., 218(2005), 343-355.
Google Scholar
|
[21]
|
J. Giné, J. Llibre, On the planar integrable difierential systems, preprint, 2009.
Google Scholar
|
[22]
|
D. Hilbert, Mathematische Probleme, Lecture, Second Internat. Congr. Math. (Paris, 1900), Nachr. Ges. Wiss. G"ttingen, Math. Phys. KL., (1900), 253-297; English transl., Bull. Amer. Math. Soc., 8(1902), 437-479.
Google Scholar
|
[23]
|
M. W. Hirsch, S. Smale and R. Devaney, Difierential equations, dynamical systems, and an introduction to chaos, second edition, Pure and Applied Mathematics (Amsterdam) 60, Elsevier Academic Press, Amsterdam, 2004.
Google Scholar
|
[24]
|
Yu. S. Il'Yashenko, Finiteness Theorems for Limit Cycles, Transl. Math. Monographs, 94; Amer. Math. Soc., Providence, R. I., 1991.
Google Scholar
|
[25]
|
J.P. Jouanolou, Equations de Pfafi algébriques, in Lectures Notes in Mathematics, 708; Springer-Verlag, New York/Berlin, 1979.
Google Scholar
|
[26]
|
A. Lins Neto, Some examples for the Poincaré and Painlevé problems, Ann. Sci. École Norm. Sup., 35(2002), 231-266.
Google Scholar
|
[27]
|
W. Li, J. Llibre, M. Nicolau and X. Zhang, On the difierentiability of flrst integrals of two dimensional flows, Proc. Amer. Math. Soc., 130(2002), 2079-2088.
Google Scholar
|
[28]
|
J. Llibre, Integrability of polynomial difierential systems, in Handbook of differential equations, Elsevier, Amsterdam, 2004.
Google Scholar
|
[29]
|
J. Llibre and J. C. Medrado, On the invariant hyperplanes for d-dimensional polynomial vector flelds, J. Phys. A:Math. Gen., 40(2007), 8385-8391.
Google Scholar
|
[30]
|
J. Llibre and G. Rodríguez, Conflgurations of limit cycles and planar polynomial vector flelds, J. Difi. Eqns., 198(2004), 374-380.
Google Scholar
|
[31]
|
J. Llibre and C. Valls, Integrability of the Bianchi IX system, J. Math. Phys., 46(2005), 1-13.
Google Scholar
|
[32]
|
J. Llibre and C. Valls, On the integrability of the Einstein-Yang-Mills equations, J. Math. Anal. Appl., 336(2007), 1203-1230.
Google Scholar
|
[33]
|
J. Llibre and X. Zhang, Invariant algebraic surfaces of the Lorenz systems, J. Mathematical Physics, 43(2002), 1622-1645.
Google Scholar
|
[34]
|
J. Llibre and X. Zhang, Darboux Theory of Integrability in Cn taking into account the multiplicity, J. of Difierential Equations, 246(2009), 541-551.
Google Scholar
|
[35]
|
J. Llibre and X. Zhang, Darboux theory of integrability for polynomial vector flelds in Rn taking into account the multiplicity at inflnity, Bull. Sci. Math., 133(2009), 765-778.
Google Scholar
|
[36]
|
J. Llibre and X. Zhang, Rational flrst integrals in the Darboux theory of integrability in Cn, Bull. Sci. Math., 134(2010), 189-195.
Google Scholar
|
[37]
|
Yiu-Kwong Man and M.A.H. Maccallum, A Rational Approach to the PrelleSinger Algorithm, J. of Symbolic Computation, 24(1997), 31-43.
Google Scholar
|
[38]
|
L. Markus, Global structure of ordinary difierential equations in the plane, Trans. Amer. Math. Soc., 76(1954), 127-148.
Google Scholar
|
[39]
|
J. Moulin Ollagnier, About a conjecture on quadratic vector flelds, Journal of Pure and Applied Algebra, 165(2001), 227-234.
Google Scholar
|
[40]
|
D. A. Neumann, Classiflcation of continuous flows on 2-manifolds, Proc. of Amer. Math. Soc., 48(1975), 73-81.
Google Scholar
|
[41]
|
J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions, SIAM Review, 38(1996), 619-636.
Google Scholar
|
[42]
|
J. V. Pereira, Vector flelds, invariant varieties and linear systems, Annales de l'institut Fourier, 51(2001), 1385-1405.
Google Scholar
|