2011 Volume 1 Issue 1
Article Contents

Junliang Lu, Jia Li. DYNAMICS OF STAGE-STRUCTURED DISCRETE MOSQUITO POPULATION MODELS[J]. Journal of Applied Analysis & Computation, 2011, 1(1): 53-67. doi: 10.11948/2011005
Citation: Junliang Lu, Jia Li. DYNAMICS OF STAGE-STRUCTURED DISCRETE MOSQUITO POPULATION MODELS[J]. Journal of Applied Analysis & Computation, 2011, 1(1): 53-67. doi: 10.11948/2011005

DYNAMICS OF STAGE-STRUCTURED DISCRETE MOSQUITO POPULATION MODELS

  • We formulate discrete-time stage-structured models, based on systems of difierence equations, for mosquito populations. We include the four distinct mosquito metamorphic stages, egg, pupa, larva, and adult, in the models. We derive a formula for the inherent net reproductive number, and investigate existence and stability of flxed points. We also show that the models, by means of numerical simulations, exhibit richer dynamics.
    MSC: 39A11;92D15;92D25;92D30;92D40
  • 加载中
  • [1] A. S. Ackleh and R. A. Chiquet, The global dynamics of a discrete juvenileadult model with continuous and seasonal reproduction, J. Biol. Dyn., 3(2009), 101-115.

    Google Scholar

    [2] A. S. Ackleh and P. De Leenheer, Discrete three-stage population model:persistence and global stability results, J. Biol. Dyn., 2(2008), 415-427.

    Google Scholar

    [3] L. J. S. Allen and P.van den Driessche, The basic reproduction number in some discrete-time epidemic models, J. Difi. Eqn. Appl., 14(2008), 1127-1147.

    Google Scholar

    [4] R. M. Anderson and R. M. May, Infectious Diseases of Humans, Dynamics and Control, Oxford Univ. Press, Oxford, 1991.

    Google Scholar

    [5] N. Becker, Mosquitoes and Their Control, Kluwer Academic/Plenum, New York, 2003.

    Google Scholar

    [6] H. Caswell, Matrix Population Models, (2nd ed.), Sinauer, Sunderland, 2001.

    Google Scholar

    [7] J. M. Cushing, Nonlinear matrix models and population dynamics, Nat. Res. Mod., 2(1988), 539-580.

    Google Scholar

    [8] J. M. Cushing, An Introduction to Structrued Population Dynamics, SIAM, Philadelphia, 1998.

    Google Scholar

    [9] J. M. Cushing, On the relationship between r and R0 and its role in the bifurcation of stable equilibria of Darwinian matrix models, J. Biol. Dyn., published online (2010).

    Google Scholar

    [10] J. M. Cushing and Z.Yicang, The net reporductive value and stability in matrix population models, Nat. Res. Mod., 8(1994), 297-333.

    Google Scholar

    [11] C. Dye, Intraspeciflc competition amongst larval aedes aegypti:Food exploitation or chemical interference. Ecol. Ento., 7(1982), 39-46.

    Google Scholar

    [12] A. Fonda, Uniformly persistent semidynamical systems, Proceed. of Amer. Math. Soc., 104(1988), 111-116.

    Google Scholar

    [13] R. M. Gleiser, J. Urrutia, and D. E. Gorla, Efiects of crowding on populations of aedes albifasciatus larvae under laboratory conditions, Ento. Exper. Appl., 95(2000), 135-140.

    Google Scholar

    [14] J. K. Hale, Discrete dissipative processes, In:Ordinary and Partial Difierential Equations, Lec. Notes in Math., W. N. Everitt and B. D. Sleeman (eds), 564(1976), 207-224.

    Google Scholar

    [15] J. K. Hale and P. Waltman, Persistence in inflnite-dimensional systems, SIAM, J. Math. Anal., 20(1989), 388-395.

    Google Scholar

    [16] J. Hofbauer and J. W. H. So, Uniform persistence and reprllors for maps, Proceed. of Amer. Math. Soc., 107(1989), 1137-1142.

    Google Scholar

    [17] N. Levinson, Transformation theory of nonlinear difierential equations of the second order, Ann. Math., 4(1944), 723-737.

    Google Scholar

    [18] E. R. Lewis, Network Models in Population Biology, Springer, New York, 1977.

    Google Scholar

    [19] Jia Li, A malaria model with partial immunity in humans, Math. Bio. Eng., 5(2008), 789-801.

    Google Scholar

    [20] Jia Li, Simple stage-structured models for wild and transgenic mosquito populations, J. Difi. Eqns. Appl., 17(2009), 327-347.

    Google Scholar

    [21] Jia Li, Malaria model with stage-structured mosquitoes, Math. Bio. Eng., (2011), in press.

    Google Scholar

    [22] Jia Li, Baojun Song, and Xiaohong Wang, An extended Ricker population model with Allee efiects, J. Difi. Eqns. Appl., 13(2007), 309-321.

    Google Scholar

    [23] G. MacDonald, The Epidemiology and Control of Malaria, Oxford Univ. Press, London, 1957.

    Google Scholar

    [24] J. D. Murray, Mathematical Biology I. An Introduction (3rd ed.), Springer, New York, 2002.

    Google Scholar

    [25] G. A. Ngwa, Modelling the dynamics of endemic malaria in growing populations, Dis. Conti. Dyn. Sys. Series B, 4(2004), 1172-1204.

    Google Scholar

    [26] G. A. Ngwa, On the population dynamics of the malaria vector, Bull. Math. Biol., 68(2006), 2161-2189.

    Google Scholar

    [27] G. A. Ngwa and W. S. Shu, A mathematical model for endemic malaria with variable human and mosquito populations, Math. Comp. Modelling, 32(2000), 747-763.

    Google Scholar

    [28] M. Otero, H. G. Solari, and N. Schweigmann, A stochastic population dynamics model for Aedes aegypti:formulation and application to a city with temperate climate, Bull. Math. Biol., 68(2006), 1945-1974.

    Google Scholar

    [29] D. Ruiz, G. Poveda, I. D. Velez, M. L. Quinones, G. L. Rua, L. E. Velasquesz, and J. S. Zuluaga, Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions:contributions to a National Malaria Early Warning System, Malaria Journal, 5(2006), 66.

    Google Scholar

    [30] W. H. Wernsdorfer, The importance of malaria in the world, in:Malaria, Vol. 1, Epidemiology, Chemotherapy, Morphology, and Metabolism, J. P. Kreier (ed.), Academic Press, New York, 1980.

    Google Scholar

    [31] H. M. Yang, Malaria transmission model for difierent levels of acquired immunity and temperature-dependent parameters (vector), Rev Saude Publica, 34(2000), 223-231.

    Google Scholar

Article Metrics

Article views(2261) PDF downloads(1211) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint