[1]
|
D. G. Aronson and H. F. Weinberger, Nonlinear difiusion in population genetics, combustion, and nerve pulse propagation, in "Partail Difierential Equations and Related Topics" (J. Goldstein, Ed.), Lecture Notes in Math., 466(1975), 5-49; Springer-Verlag, New York, 1975.
Google Scholar
|
[2]
|
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear difiusions arising in population genetics, Adv. Math., 30(1978), 33-76.
Google Scholar
|
[3]
|
H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems, I-Periodic framework, J. Eur. Math. Soc., 7(2005), 172-213.
Google Scholar
|
[4]
|
H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems, Ⅱ-General domains, J. Amer. Math. Soc., 23(2010), 1-34.
Google Scholar
|
[5]
|
H. Berestycki, F. Hamel and L. Roques, Analysis of periodically fragmented environment model:Ⅱ-Biological invasions and pulsating traveling fronts, J. Math. Pures Appl., 84(2005), 1101-1146.
Google Scholar
|
[6]
|
M. Bramson, Convergence of Solutions of the Kolmogorov Equations to Traveling Waves, Mem. Amer. Math. Soc., 44(1983), 1-190.
Google Scholar
|
[7]
|
J. G. Conlon and C. R. Doering, On travelling waves for the stochastic FisherKolmogorov-Petrovsky-Piscunov equation, J. Stat. Phys., 120(2005), 421-477.
Google Scholar
|
[8]
|
A. M. Fink, Almost Periodic Difierential Equations, Lecture Notes in Mathematics, 377, Springer-Verlag, Berlin/Heidelberg/New York, 1974.
Google Scholar
|
[9]
|
R. Fisher, The wave of advance of advantageous genes, Ann. of Eugenics, 7(1937), 335-369.
Google Scholar
|
[10]
|
M. Freidlin and J. Gärtner, On the propagation of concentration waves in periodic and ramdom media, Soviet Math. Dokl., 20(1979), 1282-1286.
Google Scholar
|
[11]
|
A. Friedman, Partial Difierential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Clifis, N. J., 1964.
Google Scholar
|
[12]
|
F. Hamel, Qualitative properties of monostable pulsating fronts:exponential decay and monotonicity, J. Math. Pures Appl., 89(2008), 355-399.
Google Scholar
|
[13]
|
S. Heinze and G. Papanicolaou, A. Stevens, A variational principle for propagation speeds in inhomogeneous media, SIAM J. Appl. Math., 62(2001), 129-148.
Google Scholar
|
[14]
|
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin, 1981.
Google Scholar
|
[15]
|
J. H. Huang and W. Shen, Speeds of spread and propagation for KPP models in time almost and space periodic media, SIAM J. Applied Dynamical Systems, 8(2009), 790-821.
Google Scholar
|
[16]
|
W. Hudson and B. Zinner, Existence of traveling waves for reaction difiusion equations of Fisher type in periodic media, Boundary value problems for functional-difierential equations, 187-199, World Sci. Publ., River Edge, NJ, 1995.
Google Scholar
|
[17]
|
J. Húska, Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains, J. Difi. Eq., 226(2006), 541-557.
Google Scholar
|
[18]
|
J. Húska, Exponential separation and principal Floquet bundles for linear parabolic equations on general bounded domains:the divergence case, Indiana Univ. Math. J., 55(2006), 1015-1043.
Google Scholar
|
[19]
|
J. Húska and P. Poláčik, The principal Floquet bundle and exponential separation for linear parabolic equations, J. Dynam. Difi. Eq., 16(2004), 347-375.
Google Scholar
|
[20]
|
J. Húska, P. Poláčik and M. V. Safonov, Harnack inequality, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(2007), 711-739.
Google Scholar
|
[21]
|
R. A. Johnson, K. J. Palmer and G. R. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal., 18(1987), 1-33.
Google Scholar
|
[22]
|
Y. Kametaka, On the nonlinear difiusion equation of Kolmogorov-PetrovskiiPiskunov type, Osaka J. Math., 13(1976), 11-66.
Google Scholar
|
[23]
|
A. Kolmogorov, I. Petrowsky and N. Piscunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Bjul. Moskovskogo Gos. Univ., 1(1937), 1-26.
Google Scholar
|
[24]
|
X. Liang, Y. Yi and X. Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, J. Difi. Eq., 231(2006), 57-77.
Google Scholar
|
[25]
|
X. Liang and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60(2007), 1-40.
Google Scholar
|
[26]
|
X. Liang and X. Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259(2010), 857-903.
Google Scholar
|
[27]
|
R. Lui, Biological growth and spread modeled by systems of recursions, Math. Biosciences, 93(1989), 269-312.
Google Scholar
|
[28]
|
J. Mierczynski and W. Shen, Exponential separation and principal Lyapunov exponent/spectrum for random/nonautonomous parabolic equations, J.Difi. Eq., 191(2003), 175-205.
Google Scholar
|
[29]
|
J. Mierczynski and W. Shen, Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman Hall/CRC, Boca Raton, FL, 2008.
Google Scholar
|
[30]
|
J. Mierczynski and W. Shen, Lyapunov exponents and asymptotic dynamics in random Kolmogorov models, J. Evolution Equations, 4(2006), 377-390.
Google Scholar
|
[31]
|
G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., 92(2009), 232-262.
Google Scholar
|
[32]
|
C. Mueller, R. B. Sowers, Random travelling waves for the KPP equation with noise, J. Funct. Anal., 128(1995), 439-498.
Google Scholar
|
[33]
|
J. Nolen, M. Rudd and J. Xin, Existence of KPP fronts in spatially-temporally periodic adevction and variational principle for propagation speeds, Dynamics of PDE, 2(2005), 1-24.
Google Scholar
|
[34]
|
J. Nolen and J. Xin, A variational principle based study of KPP minimal front speeds in random shears, Nonlinearity, 18(2005), 1655-1675.
Google Scholar
|
[35]
|
J. Nolen and J. Xin, A variational principle for KPP front speeds in temporally random shear flows, Comm. Math. Phys., 269(2007), 493-532.
Google Scholar
|
[36]
|
J. Nolen and J. Xin, Asymptotic spreading of KPP reactive fronts in imcompressible space-time random flows, Annales de l'Institut Henri Poincare-Analyse Non Lineaire, 26(2009), 815-839.
Google Scholar
|
[37]
|
P. Poláčik, On uniqueness of positive entire solutions and other properties of linear parabolic equations, Discrete Contin. Dyn. Syst., 12(2005), 13-26.
Google Scholar
|
[38]
|
P. Poláčik and I. Tereščák, Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations, J. Dynam. Difi. Eq., 5(1993), 279-303; Erratum, J. Dynam. Difi. Eq., 6(1994), 245-246.
Google Scholar
|
[39]
|
D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Advances in Math., 22(1976), 312-355.
Google Scholar
|
[40]
|
G. R. Sell, Topological Dynamics and Ordinary Difierential Equations, Van Norstand Reinhold Company, 1971.
Google Scholar
|
[41]
|
W. Shen, Traveling waves in difiusive random media, J. Dynam. Difi. Eq., 16(2004), 1011-1060.
Google Scholar
|
[42]
|
W. Shen, Variational principle for spatial spreading speeds and generalized wave solutions in time almost and space periodic KPP models, Trans. Amer. Math. Soc., 362(2010), 5125-5168.
Google Scholar
|
[43]
|
W. Shen, Existence, uniqueness, and stability of generalized traveling solutions in time dependent monostable equations, J. Dynam. Difi. Eq., to appear.
Google Scholar
|
[44]
|
W. Shen and Y. Yi, Convergence in almost periodic Fisher and Kolmogorov models, J. Math. Biol., 37(1998), 84-102.
Google Scholar
|
[45]
|
K. Uchiyama, The behavior of solutions of some nonlinear difiusion equations for large time, J. Math. Kyoto Univ., 18(1978), 453-508.
Google Scholar
|
[46]
|
H. F. Weinberger, Long-time behavior of a class of biology models, SIAM J. Math. Anal., 13(1982), 353-396.
Google Scholar
|
[47]
|
H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45(2002), 511-548.
Google Scholar
|
[48]
|
J. Xin, Front propagation in heterogeneous media, SIAM Review, 42(2000), 161-230.
Google Scholar
|
[49]
|
J. Xin, KPP front speeds in random shears and the parabolic Anderson problem, Methods and Applications of Analysis, 10(2003), 191-198.
Google Scholar
|