2011 Volume 1 Issue 1
Article Contents

Wenxian Shen. EXISTENCE OF GENERALIZED TRAVELING WAVES IN TIME RECURRENT AND SPACE PERIODIC MONOSTABLE EQUATIONS[J]. Journal of Applied Analysis & Computation, 2011, 1(1): 69-93. doi: 10.11948/2011006
Citation: Wenxian Shen. EXISTENCE OF GENERALIZED TRAVELING WAVES IN TIME RECURRENT AND SPACE PERIODIC MONOSTABLE EQUATIONS[J]. Journal of Applied Analysis & Computation, 2011, 1(1): 69-93. doi: 10.11948/2011006

EXISTENCE OF GENERALIZED TRAVELING WAVES IN TIME RECURRENT AND SPACE PERIODIC MONOSTABLE EQUATIONS

  • Fund Project:
  • This paper is concerned with the extension of the concepts and theories of traveling wave solutions of time and space periodic monostable equations to time recurrent and space periodic ones. It flrst introduces the concept of generalized traveling wave solutions of time recurrent and space periodic monostable equations, which extends the concept of periodic traveling wave solutions of time and space periodic monostable equations to time recurrent and space periodic ones. It then proves that in the direction of any unit vector ξ, there is c*(ξ) such that for any c>c*(ξ), a generalized traveling wave solution in the direction of ξ with averaged propagation speed c exists. It also proves that if the time recurrent and space periodic monostable equation is indeed time periodic, then c*(ξ) is the minimal wave speed in the direction of ξ and the generalized traveling wave solution in the direction of ξ with averaged speed c>c*(ξ) is a periodic traveling wave solution with speed c, which recovers the existing results on the existence of periodic traveling wave solutions in the direction of ξ with speed greater than the minimal speed in that direction.
    MSC: 35B15;35B35;35B40;35K55;35K57;92D25
  • 加载中
  • [1] D. G. Aronson and H. F. Weinberger, Nonlinear difiusion in population genetics, combustion, and nerve pulse propagation, in "Partail Difierential Equations and Related Topics" (J. Goldstein, Ed.), Lecture Notes in Math., 466(1975), 5-49; Springer-Verlag, New York, 1975.

    Google Scholar

    [2] D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear difiusions arising in population genetics, Adv. Math., 30(1978), 33-76.

    Google Scholar

    [3] H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems, I-Periodic framework, J. Eur. Math. Soc., 7(2005), 172-213.

    Google Scholar

    [4] H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems, Ⅱ-General domains, J. Amer. Math. Soc., 23(2010), 1-34.

    Google Scholar

    [5] H. Berestycki, F. Hamel and L. Roques, Analysis of periodically fragmented environment model:Ⅱ-Biological invasions and pulsating traveling fronts, J. Math. Pures Appl., 84(2005), 1101-1146.

    Google Scholar

    [6] M. Bramson, Convergence of Solutions of the Kolmogorov Equations to Traveling Waves, Mem. Amer. Math. Soc., 44(1983), 1-190.

    Google Scholar

    [7] J. G. Conlon and C. R. Doering, On travelling waves for the stochastic FisherKolmogorov-Petrovsky-Piscunov equation, J. Stat. Phys., 120(2005), 421-477.

    Google Scholar

    [8] A. M. Fink, Almost Periodic Difierential Equations, Lecture Notes in Mathematics, 377, Springer-Verlag, Berlin/Heidelberg/New York, 1974.

    Google Scholar

    [9] R. Fisher, The wave of advance of advantageous genes, Ann. of Eugenics, 7(1937), 335-369.

    Google Scholar

    [10] M. Freidlin and J. Gärtner, On the propagation of concentration waves in periodic and ramdom media, Soviet Math. Dokl., 20(1979), 1282-1286.

    Google Scholar

    [11] A. Friedman, Partial Difierential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Clifis, N. J., 1964.

    Google Scholar

    [12] F. Hamel, Qualitative properties of monostable pulsating fronts:exponential decay and monotonicity, J. Math. Pures Appl., 89(2008), 355-399.

    Google Scholar

    [13] S. Heinze and G. Papanicolaou, A. Stevens, A variational principle for propagation speeds in inhomogeneous media, SIAM J. Appl. Math., 62(2001), 129-148.

    Google Scholar

    [14] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin, 1981.

    Google Scholar

    [15] J. H. Huang and W. Shen, Speeds of spread and propagation for KPP models in time almost and space periodic media, SIAM J. Applied Dynamical Systems, 8(2009), 790-821.

    Google Scholar

    [16] W. Hudson and B. Zinner, Existence of traveling waves for reaction difiusion equations of Fisher type in periodic media, Boundary value problems for functional-difierential equations, 187-199, World Sci. Publ., River Edge, NJ, 1995.

    Google Scholar

    [17] J. Húska, Harnack inequality and exponential separation for oblique derivative problems on Lipschitz domains, J. Difi. Eq., 226(2006), 541-557.

    Google Scholar

    [18] J. Húska, Exponential separation and principal Floquet bundles for linear parabolic equations on general bounded domains:the divergence case, Indiana Univ. Math. J., 55(2006), 1015-1043.

    Google Scholar

    [19] J. Húska and P. Poláčik, The principal Floquet bundle and exponential separation for linear parabolic equations, J. Dynam. Difi. Eq., 16(2004), 347-375.

    Google Scholar

    [20] J. Húska, P. Poláčik and M. V. Safonov, Harnack inequality, exponential separation, and perturbations of principal Floquet bundles for linear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(2007), 711-739.

    Google Scholar

    [21] R. A. Johnson, K. J. Palmer and G. R. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal., 18(1987), 1-33.

    Google Scholar

    [22] Y. Kametaka, On the nonlinear difiusion equation of Kolmogorov-PetrovskiiPiskunov type, Osaka J. Math., 13(1976), 11-66.

    Google Scholar

    [23] A. Kolmogorov, I. Petrowsky and N. Piscunov, A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Bjul. Moskovskogo Gos. Univ., 1(1937), 1-26.

    Google Scholar

    [24] X. Liang, Y. Yi and X. Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, J. Difi. Eq., 231(2006), 57-77.

    Google Scholar

    [25] X. Liang and X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60(2007), 1-40.

    Google Scholar

    [26] X. Liang and X. Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259(2010), 857-903.

    Google Scholar

    [27] R. Lui, Biological growth and spread modeled by systems of recursions, Math. Biosciences, 93(1989), 269-312.

    Google Scholar

    [28] J. Mierczynski and W. Shen, Exponential separation and principal Lyapunov exponent/spectrum for random/nonautonomous parabolic equations, J.Difi. Eq., 191(2003), 175-205.

    Google Scholar

    [29] J. Mierczynski and W. Shen, Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman Hall/CRC, Boca Raton, FL, 2008.

    Google Scholar

    [30] J. Mierczynski and W. Shen, Lyapunov exponents and asymptotic dynamics in random Kolmogorov models, J. Evolution Equations, 4(2006), 377-390.

    Google Scholar

    [31] G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., 92(2009), 232-262.

    Google Scholar

    [32] C. Mueller, R. B. Sowers, Random travelling waves for the KPP equation with noise, J. Funct. Anal., 128(1995), 439-498.

    Google Scholar

    [33] J. Nolen, M. Rudd and J. Xin, Existence of KPP fronts in spatially-temporally periodic adevction and variational principle for propagation speeds, Dynamics of PDE, 2(2005), 1-24.

    Google Scholar

    [34] J. Nolen and J. Xin, A variational principle based study of KPP minimal front speeds in random shears, Nonlinearity, 18(2005), 1655-1675.

    Google Scholar

    [35] J. Nolen and J. Xin, A variational principle for KPP front speeds in temporally random shear flows, Comm. Math. Phys., 269(2007), 493-532.

    Google Scholar

    [36] J. Nolen and J. Xin, Asymptotic spreading of KPP reactive fronts in imcompressible space-time random flows, Annales de l'Institut Henri Poincare-Analyse Non Lineaire, 26(2009), 815-839.

    Google Scholar

    [37] P. Poláčik, On uniqueness of positive entire solutions and other properties of linear parabolic equations, Discrete Contin. Dyn. Syst., 12(2005), 13-26.

    Google Scholar

    [38] P. Poláčik and I. Tereščák, Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations, J. Dynam. Difi. Eq., 5(1993), 279-303; Erratum, J. Dynam. Difi. Eq., 6(1994), 245-246.

    Google Scholar

    [39] D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Advances in Math., 22(1976), 312-355.

    Google Scholar

    [40] G. R. Sell, Topological Dynamics and Ordinary Difierential Equations, Van Norstand Reinhold Company, 1971.

    Google Scholar

    [41] W. Shen, Traveling waves in difiusive random media, J. Dynam. Difi. Eq., 16(2004), 1011-1060.

    Google Scholar

    [42] W. Shen, Variational principle for spatial spreading speeds and generalized wave solutions in time almost and space periodic KPP models, Trans. Amer. Math. Soc., 362(2010), 5125-5168.

    Google Scholar

    [43] W. Shen, Existence, uniqueness, and stability of generalized traveling solutions in time dependent monostable equations, J. Dynam. Difi. Eq., to appear.

    Google Scholar

    [44] W. Shen and Y. Yi, Convergence in almost periodic Fisher and Kolmogorov models, J. Math. Biol., 37(1998), 84-102.

    Google Scholar

    [45] K. Uchiyama, The behavior of solutions of some nonlinear difiusion equations for large time, J. Math. Kyoto Univ., 18(1978), 453-508.

    Google Scholar

    [46] H. F. Weinberger, Long-time behavior of a class of biology models, SIAM J. Math. Anal., 13(1982), 353-396.

    Google Scholar

    [47] H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45(2002), 511-548.

    Google Scholar

    [48] J. Xin, Front propagation in heterogeneous media, SIAM Review, 42(2000), 161-230.

    Google Scholar

    [49] J. Xin, KPP front speeds in random shears and the parabolic Anderson problem, Methods and Applications of Analysis, 10(2003), 191-198.

    Google Scholar

Article Metrics

Article views(1983) PDF downloads(673) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint