[1]
|
P.W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6(2006), 1-21.
Google Scholar
|
[2]
|
T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, DOI 10.1007/s11464-008-0028-7(2008).
Google Scholar
|
[3]
|
X. Han, W. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250(2011), 1235-1266.
Google Scholar
|
[4]
|
J. Huang, The random attractor of stochastic FitzHughCNagumo equations in an infinite lattice with white noise, Phys. D, 233(2007), 83-94.
Google Scholar
|
[5]
|
Y. Lv and J.H. Sun, Dynamical behavior for stochastic lattice systems, Chaos, Solitons & Fractals, 27(2006), 1080-1090.
Google Scholar
|
[6]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 2007.
Google Scholar
|
[7]
|
D. Ruelle, Characteristic exponents for a viscous fluid subjected to time dependent forces, Comm. Math. Phys., 93(1984), 285-300.
Google Scholar
|
[8]
|
X. Wang, S. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Anal., 72(2010), 483-494.
Google Scholar
|
[9]
|
F.Q. Yin, S.F. Zhou, Z.G. OuYang and C.H. Xiao, Attractor for Lattice System of Dissipative Zakharov Equation, Acta Math. Sinica, 25:2(2009), 321-342.
Google Scholar
|
[10]
|
C.D. Zhao and S.F. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 354(2009), 78-95.
Google Scholar
|
[11]
|
S. Zhou, J. Huan and X. Han, Compact kernel sections for dissipative nonautonomous Zakharov equation on infinite lattices, Commu. Pure Appl. Anal., 9:1(2010), 193-210.
Google Scholar
|
[12]
|
S. Zhou, C. Zhao and X. Liao, Compact uniform attractor for dissipative nonautonomous lattice dynamical systems, Commu. Pure Appl. Anal., 6:4(2007), 1087-1111.
Google Scholar
|