2011 Volume 1 Issue 2
Article Contents

Yudy Bolaños, Jaume Llibre. ON THE NUMBER OF N-DIMENSIONAL INVARIANT SPHERES IN POLYNOMIAL VECTOR FIELDS OF CN+1[J]. Journal of Applied Analysis & Computation, 2011, 1(2): 173-182. doi: 10.11948/2011011
Citation: Yudy Bolaños, Jaume Llibre. ON THE NUMBER OF N-DIMENSIONAL INVARIANT SPHERES IN POLYNOMIAL VECTOR FIELDS OF CN+1[J]. Journal of Applied Analysis & Computation, 2011, 1(2): 173-182. doi: 10.11948/2011011

ON THE NUMBER OF N-DIMENSIONAL INVARIANT SPHERES IN POLYNOMIAL VECTOR FIELDS OF CN+1

  • Fund Project:
  • We study the polynomial vector fields X=???20110202??? Pi(x1,..., xn+1) /∂xi in Cn+1 with n ≥ 1. Let mi be the degree of the polynomial Pi. We call (m1,..., mn+1) the degree of X. For these polynomial vector fields X and in function of their degree we provide upper bounds, first for the maximal number of invariant n-dimensional spheres, and second for the maximal number of n-dimensional concentric invariant spheres.
    MSC: 58F14;58F22;34C05
  • 加载中
  • [1] J.C. Artés, B. Grünbaum and J. Llibre, On the number of invariant straight lines for polynomial differential systems, Pacific J. of Mathematics, 184(1998), 207-230.

    Google Scholar

    [2] C. Christopher, J. Llibre, C. Pantazi and X. Zhang, Darboux integrability and invariant algebraic curves for planar polynomial systems, J. of Physics A:Math. Gen., 35(2002), 2457-2476.

    Google Scholar

    [3] C. Christopher, J. Llibre and J.V. Pereira, Multiplicity of invariant algebraic curves in polynomial vector fields, Pacific J. of Mathematics, 229(2007), 63-117.

    Google Scholar

    [4] G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges), Bull. Sci. math., 2ème série 2(1878), 60-96; 123-144; 151-200.

    Google Scholar

    [5] J. Llibre and J.C. Medrado, On the invariant hyperplanes for d-dimensional polynomial vector fields, J. of Physics A:Math. Gen., 40(2007), 8385-8391.

    Google Scholar

    [6] J. Llibre and X. Zhang, Darboux Theory of Integrability in Cn taking into account the multiplicity, J. of Differential Equations, 246(2009), 541-551.

    Google Scholar

    [7] J. Sokulski, On the number of invariant lines of polynomial vector fields. Nonlinearity, 9(1996), 479-485.

    Google Scholar

    [8] X. Zhang, Number of integral lines of polynomial systems of degree three and four, J. of Nanjing University (Mathematical Biquarterly), 10(1993), 209-212.

    Google Scholar

Article Metrics

Article views(1889) PDF downloads(811) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint