Yudy Bolaños, Jaume Llibre. ON THE NUMBER OF N-DIMENSIONAL INVARIANT SPHERES IN POLYNOMIAL VECTOR FIELDS OF CN+1[J]. Journal of Applied Analysis & Computation, 2011, 1(2): 173-182. doi: 10.11948/2011011
Citation: |
Yudy Bolaños, Jaume Llibre. ON THE NUMBER OF N-DIMENSIONAL INVARIANT SPHERES IN POLYNOMIAL VECTOR FIELDS OF CN+1[J]. Journal of Applied Analysis & Computation, 2011, 1(2): 173-182. doi: 10.11948/2011011
|
ON THE NUMBER OF N-DIMENSIONAL INVARIANT SPHERES IN POLYNOMIAL VECTOR FIELDS OF CN+1
-
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
-
Abstract
We study the polynomial vector fields X=???20110202??? Pi(x1,..., xn+1) ∂/∂xi in Cn+1 with n ≥ 1. Let mi be the degree of the polynomial Pi. We call (m1,..., mn+1) the degree of X. For these polynomial vector fields X and in function of their degree we provide upper bounds, first for the maximal number of invariant n-dimensional spheres, and second for the maximal number of n-dimensional concentric invariant spheres.
-
-
References
[1]
|
J.C. Artés, B. Grünbaum and J. Llibre, On the number of invariant straight lines for polynomial differential systems, Pacific J. of Mathematics, 184(1998), 207-230.
Google Scholar
|
[2]
|
C. Christopher, J. Llibre, C. Pantazi and X. Zhang, Darboux integrability and invariant algebraic curves for planar polynomial systems, J. of Physics A:Math. Gen., 35(2002), 2457-2476.
Google Scholar
|
[3]
|
C. Christopher, J. Llibre and J.V. Pereira, Multiplicity of invariant algebraic curves in polynomial vector fields, Pacific J. of Mathematics, 229(2007), 63-117.
Google Scholar
|
[4]
|
G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges), Bull. Sci. math., 2ème série 2(1878), 60-96; 123-144; 151-200.
Google Scholar
|
[5]
|
J. Llibre and J.C. Medrado, On the invariant hyperplanes for d-dimensional polynomial vector fields, J. of Physics A:Math. Gen., 40(2007), 8385-8391.
Google Scholar
|
[6]
|
J. Llibre and X. Zhang, Darboux Theory of Integrability in Cn taking into account the multiplicity, J. of Differential Equations, 246(2009), 541-551.
Google Scholar
|
[7]
|
J. Sokulski, On the number of invariant lines of polynomial vector fields. Nonlinearity, 9(1996), 479-485.
Google Scholar
|
[8]
|
X. Zhang, Number of integral lines of polynomial systems of degree three and four, J. of Nanjing University (Mathematical Biquarterly), 10(1993), 209-212.
Google Scholar
|
-
-
-