[1]
|
V. I. Arnold, Mathematical methods of classical mechanics, Springer, New York, 1983.
Google Scholar
|
[2]
|
Q. Cao, M. Wiercigroch, E. E. Pavlovskaia, J. M. T. Thompson and C. Grebogi, Archetypal oscillator for smooth and discontinuous dynamics, Physical Review E, 74:4(2006), 046218.
Google Scholar
|
[3]
|
Q. Cao, M. Wiercigroch, E. E. Pavlovskaia, J. M. T. Thompson and C. Grebogi, Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics, Philosophical Transactions of the Royal Society A, 366:1865(2008), 635-652.
Google Scholar
|
[4]
|
Q. Cao, M. Wiercigroch, E. E. Pavlovskaia, J. M. T. Thompson and C. Grebogi, The limit case response of the archetypal oscillator for smooth and discontinuous dynamics, International Journal of nonlinear Mechanics, 43(2008), 462-473.
Google Scholar
|
[5]
|
A. A. Chernikov, R. Z. Sagdeev, D. A. Usikov, M. Yu Zakharov and G. M. Zaslavsky, Minimal chaos and stochastic webs, Nature, 326(1987), 559-563.
Google Scholar
|
[6]
|
R. M. Evan-Iwanowski, Resonance Oscillations in Mechanical Systems, Elsvier Scientific Publishing Company, Amsterdam, Oxford and New York, 1976.
Google Scholar
|
[7]
|
M. I. Feigin, Resonance behaviour of a dynamical system with collisions, Journal of Applied Mathematics and Mechanics, 30:5(1966), 1118-1123.
Google Scholar
|
[8]
|
A.F. Filippov, Differential equations with discontinuous right-hand side, Am. Math. Soc. Transl. Ser. 2, 42(1964), 199-231.
Google Scholar
|
[9]
|
M. Frasca, Duality in Perturbation Theory and the Quantum Adiabatic Approximation, Phys. Rev. A, 58(1998), 3439-3442.
Google Scholar
|
[10]
|
M. Frasca, A strongly perturbed quantum system is a semiclassical system, Proc. R. Soc. A, 463(2007), 2195-2200.
Google Scholar
|
[11]
|
E. A. Jackson, Persentives on nonlinear dynamics 1,2, Cambridge University Press, Cambridge, 1990.
Google Scholar
|
[12]
|
T. Kapitaniak and S. R. Bishop, Nonlinear dynamics and Chaos, The illustrated dictionary of, John Wiley & Sons, Chichester, 1999.
Google Scholar
|
[13]
|
L. D. Landau and E. M. Lifschitz, Quantum Mechanics:Non-relativistic Theory, Third Edition, Pergamon Press, Oxford, 1977.
Google Scholar
|
[14]
|
S. Lenci and G. Rega, A Procedure for Reducing the Chaotic Response Region in an Impact Mechanical System, Nonlinear Dynamics, 15(1998), 391-409.
Google Scholar
|
[15]
|
R. I. Leine, D. H. Van Campen, A. De Kraker and L. Van den Steen, Stick-Slip vibrations induced by alternate friction models, Nonlinear Dynamics, 16(1998), 41-54.
Google Scholar
|
[16]
|
A.J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion, Springer-Verlag, New York, 1992.
Google Scholar
|
[17]
|
A. C. J. Luo and G. Keqin, On resonant separatrix bands of a Duffing oscillator with a twin-well potential, Chaos, Solitons & Fractals, 15:4(2003), 771-782.
Google Scholar
|
[18]
|
A. C. J. Luo, On the symmetry of solutions in non-smooth dynamical systems with two constraints, Journal of Sound and Vibration, 273(2004), 1118-1126.
Google Scholar
|
[19]
|
V.D. Nguyen, K.C. Woo and E. Pavlovskaia, Experimental study and mathematical modelling of a new of vibro-impact moling device, International Journal of Non-linear Mechanics, 43:6(2008), 542-550.
Google Scholar
|
[20]
|
K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics Letters A, 170(1992), 421-428.
Google Scholar
|
[21]
|
D. Treschev and O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems, Springer Monographs in Mathematics, 2010.
Google Scholar
|
[22]
|
Y. Ueda, The Road to Chaos-Ⅱ, Aerial Press, Santa Cruz, 2001.
Google Scholar
|
[23]
|
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990.
Google Scholar
|
[24]
|
Y. P. Xiong, J. T. Xing and W.G. Price, Interactive power flow characteristics of an integrated equipment-nonlinear isolator-travelling flexible ship excited by sea waves, Journal of Sound and Vibration, 287:1-2(2005), 245-276.
Google Scholar
|
[25]
|
G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2005.
Google Scholar
|