[1]
|
H. Berestycki, P. L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in RN, Indiana Univ. Math. J., 30:1(1981), 141-157.
Google Scholar
|
[2]
|
D. Bonheure, J. M. Gomes and L. Sanchez, Positive solutions of a second-order singular ordinary differential equation, Nonlinear Anal., 61(2005), 1383-1399.
Google Scholar
|
[3]
|
F. Dell'Isola, H. Gouin and G. Rotoli, Nucleation of spherical shell-like interfaces by second gradient theory:Numerical simulations, Eur. J. Mech. B Fluids, 15(1996), 545-568.
Google Scholar
|
[4]
|
G. H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys., 5(1965), 1252-1254.
Google Scholar
|
[5]
|
S. L. Gavrilyuk and S. M. Shugrin, Media with equations of state that depend on derivatives, J. Appl. Mech. Tech. Phys., 37(1996), 177-189.
Google Scholar
|
[6]
|
H. Gouin and G. Rotoli, An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids, Mech. Res. Comm., 24(1997), 255-260.
Google Scholar
|
[7]
|
M. Izydorek and J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems, J. Differential Equations, 219:2(2005), 375-389.
Google Scholar
|
[8]
|
G. Kitzhofer, O. Koch, P. Lima and E. Weinmüller, Efficient numerical solution of the density profile equation in hydrodynamics, J. Sci. Comput., 32:3(2007), 411-424.
Google Scholar
|
[9]
|
P. Korman and A.C. Lazer, Homoclinic orbits for a class of symmetric Hamiltonian systems, Electron. J. Differential Equations, 1994:1(1994), 1-10.
Google Scholar
|
[10]
|
J. P. Lepeltier and J. S. Martin, Backward stochastic differential equations with continuous coefficient, Statist. Probab. Lett., 32(1997), 425-430.
Google Scholar
|
[11]
|
H. R. Lian and W. G. Ge, Calculus of variations for a boundary value problem of differential system on the half line, Comput. Math. Appl., 58(2009), 58-64.
Google Scholar
|
[12]
|
P. M. Lima, N. B. Konyukhova, A. I. Sukov and N. V. Chemetov, Analyticalnumerical investigation of bubble-type solutions of nonlinear singular problems, J. Comput. Appl. Math., 189(2006), 260-273.
Google Scholar
|
[13]
|
J. Mawhin and M. Willem, Critical Point Theorey and Hamiltonian Systems, Springer, New York, 1989.
Google Scholar
|
[14]
|
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS, American Mathematical Society, vol. 65, 1986.
Google Scholar
|
[15]
|
I. Rachůnková and J. Tomeček, Bubble-type solutions of nonlinear singular problems, Math. Comput. Model., 51(2010), 658-669.
Google Scholar
|
[16]
|
I. Rachůnková and J. Tomeček, Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics, Nonlinear Anal., 72(2010), 2114-2118.
Google Scholar
|
[17]
|
I. Rachůnková and J. Tomeček, Singular nonlinear problem for ordinary differential equation of the second-order on the half-line, in:A. Cabada, E. Liz, J.J. Nieto (Eds.), Mathematical Models in Engineering, Biology and Medicine, Proc. of Intern. Conf. on BVPs, 2009, 294-303.
Google Scholar
|
[18]
|
Z. H. Zhang and R. Yuan, Homoclinic solutions of some second order nonautonomous systems, Nonlinear Anal., 71(2009), 5790-5798.
Google Scholar
|
[19]
|
Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 249(2010), 1199-1212.
Google Scholar
|