2011 Volume 1 Issue 2
Article Contents

Jibin Li, Zhijun Qiao. EXPLICIT SOLITON SOLUTIONS OF THE KAUP-KUPERSHMIDT EQUATION THROUGH THE DYNAMICAL SYSTEM APPROACH[J]. Journal of Applied Analysis & Computation, 2011, 1(2): 243-250. doi: 10.11948/2011016
Citation: Jibin Li, Zhijun Qiao. EXPLICIT SOLITON SOLUTIONS OF THE KAUP-KUPERSHMIDT EQUATION THROUGH THE DYNAMICAL SYSTEM APPROACH[J]. Journal of Applied Analysis & Computation, 2011, 1(2): 243-250. doi: 10.11948/2011016

EXPLICIT SOLITON SOLUTIONS OF THE KAUP-KUPERSHMIDT EQUATION THROUGH THE DYNAMICAL SYSTEM APPROACH

  • Fund Project:
  • In this paper, we study the traveling wave solutions of the KaupKupershmidt (KK) equation through using the dynamical system approach, which is an integrable fifth-order wave equation. Based on Cosgrove's work[3] and the phase analysis method of dynamical systems, infinitely many soliton solutions are presented in an explicit form. To guarantee the existence of soliton solutions, we discuss the parameters range as well as geometrical explanation of soliton solutions.
    MSC: 34C23;34C37;35Q55;37K45;58Z05;74J30
  • 加载中
  • [1] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons Phys. Rev. Lett., 71(1993), 1661-1664.

    Google Scholar

    [2] P. J. Caudrey, R. K. Dodd and J. D. Gibbon, A new hierarchy of Korteweg-de Vries equations, Proc. Roy. Soc. London Ser. A, 351(1976), 407-422.

    Google Scholar

    [3] M. C. Cosgrove, Higher-order Painlev equations in the polynomial class I. Bureau symbol P2., Stud. Appl. Math., 104(2000), 1-65.

    Google Scholar

    [4] A. Degasperis and M. Procesi, Symmetry and Perturbation Theory, World Scientific, 1999, 23-37.

    Google Scholar

    [5] J. M. Dye and A. Parker, On bidirectional fifth-order nonlinear evolution equations, Lax pairs, and directionally dependent solitary waves, J. Math. Phys., 42(2001), 2567-2589.

    Google Scholar

    [6] A. P. Fordy and J. Gibbons, Some remarkable nonlinear transformations, Phys. Lett. A, 75(1979/80), 325.

    Google Scholar

    [7] A. Karsau-Kalkani, A. Karsau, A. Sakovich, S. Sarkovich and R. Turhan, A new integrable generalization of the Korteweg-de Vries equation, J. Math. Phys., 49(2008), 073516-1-10.

    Google Scholar

    [8] D. Kaup, On the inverse scattering problem for cubic eigenvalue problems of the class ψxxx +6Qψx +6Rψ=λψ, Stud. Appl. Math. 62(1980), 189-216.

    Google Scholar

    [9] B. A. Kupershmidt, A super Korteweg-de Vries equation:an integrable system, Phys. Lett. A, 102(1984), 213-215.

    Google Scholar

    [10] J. Li and Y. Zhang, Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations, Discrete Contin. Dyn. Syst. Ser. B, 13(2010), 623-631.

    Google Scholar

    [11] Z. J. Qiao and G. Zhang, On peaked and smooth solitons for the Camassa-Holm equation, Europhys. Lett., 73(2006), 657C663.

    Google Scholar

    [12] Z. J. Qiao, New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W-shape peak solitons., J. Math. Phys. 48(2007), 082701-20. A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47(2006), 112701-9.

    Google Scholar

    [13] K. Sawada and T. Kotera, A method for finding N-soliton solutions of the K.d.V. equation and K.d.V.-like equation Progr. Theoret. Phys., 51(1974), 1355-1367.

    Google Scholar

    [14] M. Wadati, The modified Korteweg-de Vries equation, J. Phys. Soc. Japan, 34(1973), 1289-1296.

    Google Scholar

Article Metrics

Article views(2614) PDF downloads(805) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint