[1]
|
R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons Phys. Rev. Lett., 71(1993), 1661-1664.
Google Scholar
|
[2]
|
P. J. Caudrey, R. K. Dodd and J. D. Gibbon, A new hierarchy of Korteweg-de Vries equations, Proc. Roy. Soc. London Ser. A, 351(1976), 407-422.
Google Scholar
|
[3]
|
M. C. Cosgrove, Higher-order Painlev equations in the polynomial class I. Bureau symbol P2., Stud. Appl. Math., 104(2000), 1-65.
Google Scholar
|
[4]
|
A. Degasperis and M. Procesi, Symmetry and Perturbation Theory, World Scientific, 1999, 23-37.
Google Scholar
|
[5]
|
J. M. Dye and A. Parker, On bidirectional fifth-order nonlinear evolution equations, Lax pairs, and directionally dependent solitary waves, J. Math. Phys., 42(2001), 2567-2589.
Google Scholar
|
[6]
|
A. P. Fordy and J. Gibbons, Some remarkable nonlinear transformations, Phys. Lett. A, 75(1979/80), 325.
Google Scholar
|
[7]
|
A. Karsau-Kalkani, A. Karsau, A. Sakovich, S. Sarkovich and R. Turhan, A new integrable generalization of the Korteweg-de Vries equation, J. Math. Phys., 49(2008), 073516-1-10.
Google Scholar
|
[8]
|
D. Kaup, On the inverse scattering problem for cubic eigenvalue problems of the class ψxxx +6Qψx +6Rψ=λψ, Stud. Appl. Math. 62(1980), 189-216.
Google Scholar
|
[9]
|
B. A. Kupershmidt, A super Korteweg-de Vries equation:an integrable system, Phys. Lett. A, 102(1984), 213-215.
Google Scholar
|
[10]
|
J. Li and Y. Zhang, Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations, Discrete Contin. Dyn. Syst. Ser. B, 13(2010), 623-631.
Google Scholar
|
[11]
|
Z. J. Qiao and G. Zhang, On peaked and smooth solitons for the Camassa-Holm equation, Europhys. Lett., 73(2006), 657C663.
Google Scholar
|
[12]
|
Z. J. Qiao, New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W-shape peak solitons., J. Math. Phys. 48(2007), 082701-20. A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47(2006), 112701-9.
Google Scholar
|
[13]
|
K. Sawada and T. Kotera, A method for finding N-soliton solutions of the K.d.V. equation and K.d.V.-like equation Progr. Theoret. Phys., 51(1974), 1355-1367.
Google Scholar
|
[14]
|
M. Wadati, The modified Korteweg-de Vries equation, J. Phys. Soc. Japan, 34(1973), 1289-1296.
Google Scholar
|