[1]
|
P. S. Casas and R. Quintanilla, Exponential stability in thermoelasticity with microtemperatures, International Journal of Engineering Science, 43(2005), 33-47.
Google Scholar
|
[2]
|
P. S. Casas and R. Quintanilla, Exponential decay in one-dimensional porousthemoelasticity, Mechanics Research Communications, 32(2005), 652-658.
Google Scholar
|
[3]
|
S. C. Cowin and J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13(1983), 125-147.
Google Scholar
|
[4]
|
S. C. Cowin, The viscoelastic behavior of linear elastic materials with voids, J. Elasticity, 15(1985), 185-191.
Google Scholar
|
[5]
|
P. Glowinski and A. Lada, Stabilization of elasticity-viscoporosity system by linear boundary feedback, Math. Methos Appl. Sci., 32(2009), 702-722.
Google Scholar
|
[6]
|
D. Ieşan, On a Theory of Thermoviscoelastic Materials with Voids, J. Elasticity, DOI:10.1007/s10659-010-9300-7(2011).
Google Scholar
|
[7]
|
D. Ieşan, Thermoelastic models of Continua, Springer, 2004.
Google Scholar
|
[8]
|
D. Ieşan and R. Quintanilla, A theory of porous thermoviscoelastic mixtures, Journal of Thermal Stresses, 30(2007), 693-714.
Google Scholar
|
[9]
|
B. Lazzari and R. Nibbi, On the influence of a dissipative boundary on the energy decay for a porous elastic solid, Mech. Research Ccommunications, 36(2009), 581-586.
Google Scholar
|
[10]
|
Z. Liu and M. Renardy, A note on the equation of a thermoelastic plate, Appl. Math. Letters, 8(1995), 1-6.
Google Scholar
|
[11]
|
Z. Liu and S. Zheng, Semigroups associated to dissipative systems, Chapman & Hall/CRC Boca Raton, FL. Research Notes in Mathematics, 398(1999).
Google Scholar
|
[12]
|
A. Magaña and R. Quintanilla, On the time decay of solutions in onedimensional theories of porous materials, International Journal of Solids and Structures, 43(2006), 3414-3427.
Google Scholar
|
[13]
|
J. E. Muñoz Rivera and R. Quintanilla, On the time polynomial decay in elastic solids with voids, Jour. Mathematical Anal. Appl., 338(2008), 1296-1309.
Google Scholar
|
[14]
|
J. W. Nunziato and S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72(1979), 175-201.
Google Scholar
|
[15]
|
P. X. Pamplona, J. E. Muñoz Rivera and R. Quintanilla, Stabilization in elastic solids with voids, J. Math. Anal. Appl., 350(2009), 37-49.
Google Scholar
|
[16]
|
P. X. Pamplona, J. E. Muñoz Rivera and R. Quintanilla, On the decay of solutions for porous-elastic systems with history, J. Math. Anal. Appl., 379(2011), 682-705.
Google Scholar
|
[17]
|
R. Quintanilla, Slow decay for one-dimensional porous dissipation elasticity, Appl. Mathematics Letters, 16(2003), 487-491.
Google Scholar
|