2011 Volume 1 Issue 2
Article Contents

Minzhi Wei, Shengqiang Tang. EXACT EXPLICIT TRAVELING WAVE SOLUTIONS FOR A NEW COUPLED ZK SYSTEM[J]. Journal of Applied Analysis & Computation, 2011, 1(2): 267-277. doi: 10.11948/2011018
Citation: Minzhi Wei, Shengqiang Tang. EXACT EXPLICIT TRAVELING WAVE SOLUTIONS FOR A NEW COUPLED ZK SYSTEM[J]. Journal of Applied Analysis & Computation, 2011, 1(2): 267-277. doi: 10.11948/2011018

EXACT EXPLICIT TRAVELING WAVE SOLUTIONS FOR A NEW COUPLED ZK SYSTEM

  • Fund Project:
  • The extended tanh-coth method and sech method are used to construct exact solutions of a new coupled ZK system. Traveling wave solutions are determined, which include solitary wave and periodic wave solutions.
    MSC: 74J35;35Q51
  • 加载中
  • [1] MJ. Ablowitz and PA. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge:Cambridge University Press, 1991.

    Google Scholar

    [2] B. Feng, B. Malomed and T. Kawahara, Cylindrical solitary pulses in a twodimensional stabilized Kuramoto-Sivashinsky system, Phys. D., 175(2003), 127-38.

    Google Scholar

    [3] E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277(2000), 212-218.

    Google Scholar

    [4] B. Li, Y. Chen and H. Zhang, Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation, Appl. Math. Comput., 146(2003), 653-666.

    Google Scholar

    [5] S. Munro and EJ. Parkes, The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions, J. Plasma. Phys., 62(1999), 305-317.

    Google Scholar

    [6] S. Munro and EJ. Parkes, Stability of solitary-wave solutions to a modified ZakharovCKuznetsov equation, J. Plasma. Phys., 64(2000), 411-426.

    Google Scholar

    [7] W. Malfliet, The tanh method:I. Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54(1996), 563-568.

    Google Scholar

    [8] W. Malfliet and W. Hereman, The tanh method:Ⅱ. Perturbation technique for conservative systems, Phys. Scr., 54(1996), 569-575.

    Google Scholar

    [9] ZY. Qin, A finite-dimensional integrable system related to a new coupled KdV hierarchy, Phys. Lett. A, 355(2006), 452-459.

    Google Scholar

    [10] BK. Shivamoggi, The Painlev analysis of the Zakharov-Kuznetsov equation, Phys. Scr., 42(1990), 641-642.

    Google Scholar

    [11] H. Schamel, A modified Kortweg-de Vries equation for ion acoustic waves due to resonant electrons, J. Plasma. Phys., 9(1973), 377-387.

    Google Scholar

    [12] S. Tang, Y. Xiao and Z. Wang, Travelling wave solutions for a class of nonlinear fourth order variant of a generalized Camassa-Holm equation, Appl. Math. Comput., 210(2009), 39-47.

    Google Scholar

    [13] A.M. Wazwaz, Exact solutions with solitons and periodic structures for the Zakharov-Kuznetsov(ZK) equation and its modified form, Commun. Nonlinear. Sci. Numer. Simul., 10(2005), 597-606.

    Google Scholar

    [14] A.M. Wazwaz, The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms, Commun. Nonlinear. Sci. Numer. Simul., 13(2008), 1039-1047.

    Google Scholar

    [15] A.M. Wazwaz, Completely integrable coupled KdV and coupled KP systems, Commun. Nonlinear. Sci. Numer. Simulat., 15(2010), 2828-2835.

    Google Scholar

    [16] A.M. Wazwaz, Solutions of compact and noncompact structures for nonlinear Klein-Gordon-type equation, Appl. Math. Comput., 134(2003), 487-500.

    Google Scholar

    [17] A.M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Model., 40(2004), 499-508.

    Google Scholar

    [18] D. S. Wang and H.Q. Zhang, Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation, Chaos, Solitons and Fractals, 25(2005), 601-610.

    Google Scholar

    [19] D. S. Wang and H. Li, Single and multi-solitary wave solutions to a class of nonlinear evolution equations, J. Math. Anal. Appl., 343(2008), 273-298.

    Google Scholar

    [20] D. S. Wang, D. J. Zhang and J. Yang, Integrable properties of the general coupled nonlinear Schrödinger equations, J. Math. Phys., 51(2010), 023510.

    Google Scholar

    [21] J. Wu, New explicit travelling wave solutions for three nonlinear evolution equations, Appl. Math. Comput., 217(2010), 1764-1770.

    Google Scholar

    [22] VE. Zakharov and EA. Kuznetsov, On three-dimensional solitons, Sov. Phys., 39(1974), 285-288.

    Google Scholar

Article Metrics

Article views(1607) PDF downloads(1315) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint