[1]
|
MJ. Ablowitz and PA. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge:Cambridge University Press, 1991.
Google Scholar
|
[2]
|
B. Feng, B. Malomed and T. Kawahara, Cylindrical solitary pulses in a twodimensional stabilized Kuramoto-Sivashinsky system, Phys. D., 175(2003), 127-38.
Google Scholar
|
[3]
|
E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277(2000), 212-218.
Google Scholar
|
[4]
|
B. Li, Y. Chen and H. Zhang, Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation, Appl. Math. Comput., 146(2003), 653-666.
Google Scholar
|
[5]
|
S. Munro and EJ. Parkes, The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions, J. Plasma. Phys., 62(1999), 305-317.
Google Scholar
|
[6]
|
S. Munro and EJ. Parkes, Stability of solitary-wave solutions to a modified ZakharovCKuznetsov equation, J. Plasma. Phys., 64(2000), 411-426.
Google Scholar
|
[7]
|
W. Malfliet, The tanh method:I. Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54(1996), 563-568.
Google Scholar
|
[8]
|
W. Malfliet and W. Hereman, The tanh method:Ⅱ. Perturbation technique for conservative systems, Phys. Scr., 54(1996), 569-575.
Google Scholar
|
[9]
|
ZY. Qin, A finite-dimensional integrable system related to a new coupled KdV hierarchy, Phys. Lett. A, 355(2006), 452-459.
Google Scholar
|
[10]
|
BK. Shivamoggi, The Painlev analysis of the Zakharov-Kuznetsov equation, Phys. Scr., 42(1990), 641-642.
Google Scholar
|
[11]
|
H. Schamel, A modified Kortweg-de Vries equation for ion acoustic waves due to resonant electrons, J. Plasma. Phys., 9(1973), 377-387.
Google Scholar
|
[12]
|
S. Tang, Y. Xiao and Z. Wang, Travelling wave solutions for a class of nonlinear fourth order variant of a generalized Camassa-Holm equation, Appl. Math. Comput., 210(2009), 39-47.
Google Scholar
|
[13]
|
A.M. Wazwaz, Exact solutions with solitons and periodic structures for the Zakharov-Kuznetsov(ZK) equation and its modified form, Commun. Nonlinear. Sci. Numer. Simul., 10(2005), 597-606.
Google Scholar
|
[14]
|
A.M. Wazwaz, The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms, Commun. Nonlinear. Sci. Numer. Simul., 13(2008), 1039-1047.
Google Scholar
|
[15]
|
A.M. Wazwaz, Completely integrable coupled KdV and coupled KP systems, Commun. Nonlinear. Sci. Numer. Simulat., 15(2010), 2828-2835.
Google Scholar
|
[16]
|
A.M. Wazwaz, Solutions of compact and noncompact structures for nonlinear Klein-Gordon-type equation, Appl. Math. Comput., 134(2003), 487-500.
Google Scholar
|
[17]
|
A.M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Model., 40(2004), 499-508.
Google Scholar
|
[18]
|
D. S. Wang and H.Q. Zhang, Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation, Chaos, Solitons and Fractals, 25(2005), 601-610.
Google Scholar
|
[19]
|
D. S. Wang and H. Li, Single and multi-solitary wave solutions to a class of nonlinear evolution equations, J. Math. Anal. Appl., 343(2008), 273-298.
Google Scholar
|
[20]
|
D. S. Wang, D. J. Zhang and J. Yang, Integrable properties of the general coupled nonlinear Schrödinger equations, J. Math. Phys., 51(2010), 023510.
Google Scholar
|
[21]
|
J. Wu, New explicit travelling wave solutions for three nonlinear evolution equations, Appl. Math. Comput., 217(2010), 1764-1770.
Google Scholar
|
[22]
|
VE. Zakharov and EA. Kuznetsov, On three-dimensional solitons, Sov. Phys., 39(1974), 285-288.
Google Scholar
|