[1]
|
M. Alanelli and A. Hadjidimos, Block Gauss elimination followed by a classical iterative method for solution of linear systems,J. Comput. Appl. Math., 163(2004), 381-400.
Google Scholar
|
[2]
|
T. Z. Huang, X. Z. Wang and Y. D. Fu, Improving Jacobi methods for nonnegative H-matrices linear systems, Appl. Math. Comput., 186,(2007), 1542-1550.
Google Scholar
|
[3]
|
W. Li, A note on the preconditioned Gauss-Seidel (GS) method for linear systems, J. Comput. Appl. Math., 182(2005), 81-90.
Google Scholar
|
[4]
|
W. Li, The convergence of the modified Gauss-Seidel methods for constant linear systems, J. Comput. Appl. Math., 154(2003), 97-105.
Google Scholar
|
[5]
|
W. Li and W. Sun, Modified Gauss-Seidel type methods and Jacobi type methods for Z-matrices, Lin. Alg. Appl., 317(2000), 227-240.
Google Scholar
|
[6]
|
H. Niki, K. Harada, M. Morimoto and M. Sakakihara, The survey of preconditiopners used for accelerating the rate of convergence in the Gauss-Seidel method, J. Comput. Appl. Math.,164-165(2004), 587-600.
Google Scholar
|
[7]
|
N. Ujevic, A new iterative method for solving linear systems, Appl. Math. Comput., 179(2006), 725-730.
Google Scholar
|
[8]
|
R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
Google Scholar
|
[9]
|
Z. D. Wang and T. Z. Huang, The upper Jacobi and upper Gauss-Seidel type iterative methods for preconditioned linear systems, Appl. Math. Letters, 19(2006), 1029-1036.
Google Scholar
|
[10]
|
Z. D. Wang and T. Z. Huang, Comparison results between Jacobi and other iterative methods, J. Comput. Appl. Math., 169(2004), 45-51.
Google Scholar
|
[11]
|
D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.
Google Scholar
|
[12]
|
Y. Zhang, T. Z. Huang, X. P. Liu and T. X. Gu, A class of preconditioners based on the (I + S(α))-type precondioning matrices for solving linear systems, J. Comput. Appl. Math., 189(2007), 1737-1748.
Google Scholar
|
[13]
|
Y. Zhang, T. Z. Huang and X. P. Liu, Modified iterative methods for nonnegative matrices and M-matrices linear systems, Int. J. Computer Math. Appl., 50(2005), 1587-1602.
Google Scholar
|
[14]
|
B. Zheng and L. Wang, Spectral radius and infinity norm of matrices, J. Math. Anal. Appl., 346(2008), 243-250.
Google Scholar
|