2011 Volume 1 Issue 3
Article Contents

Joshua Du, Baodong Zheng, Liancheng Wang. NEW ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS[J]. Journal of Applied Analysis & Computation, 2011, 1(3): 351-360. doi: 10.11948/2011024
Citation: Joshua Du, Baodong Zheng, Liancheng Wang. NEW ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS[J]. Journal of Applied Analysis & Computation, 2011, 1(3): 351-360. doi: 10.11948/2011024

NEW ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

  • In this paper, we introduce some new iterative methods to solve linear systems Ax=b. We show that these methods, comparing to the classical Jacobi or Gauss-Seidel method, can be applied to more systems and have faster convergence.
    MSC: 15A06
  • 加载中
  • [1] M. Alanelli and A. Hadjidimos, Block Gauss elimination followed by a classical iterative method for solution of linear systems,J. Comput. Appl. Math., 163(2004), 381-400.

    Google Scholar

    [2] T. Z. Huang, X. Z. Wang and Y. D. Fu, Improving Jacobi methods for nonnegative H-matrices linear systems, Appl. Math. Comput., 186,(2007), 1542-1550.

    Google Scholar

    [3] W. Li, A note on the preconditioned Gauss-Seidel (GS) method for linear systems, J. Comput. Appl. Math., 182(2005), 81-90.

    Google Scholar

    [4] W. Li, The convergence of the modified Gauss-Seidel methods for constant linear systems, J. Comput. Appl. Math., 154(2003), 97-105.

    Google Scholar

    [5] W. Li and W. Sun, Modified Gauss-Seidel type methods and Jacobi type methods for Z-matrices, Lin. Alg. Appl., 317(2000), 227-240.

    Google Scholar

    [6] H. Niki, K. Harada, M. Morimoto and M. Sakakihara, The survey of preconditiopners used for accelerating the rate of convergence in the Gauss-Seidel method, J. Comput. Appl. Math.,164-165(2004), 587-600.

    Google Scholar

    [7] N. Ujevic, A new iterative method for solving linear systems, Appl. Math. Comput., 179(2006), 725-730.

    Google Scholar

    [8] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.

    Google Scholar

    [9] Z. D. Wang and T. Z. Huang, The upper Jacobi and upper Gauss-Seidel type iterative methods for preconditioned linear systems, Appl. Math. Letters, 19(2006), 1029-1036.

    Google Scholar

    [10] Z. D. Wang and T. Z. Huang, Comparison results between Jacobi and other iterative methods, J. Comput. Appl. Math., 169(2004), 45-51.

    Google Scholar

    [11] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

    Google Scholar

    [12] Y. Zhang, T. Z. Huang, X. P. Liu and T. X. Gu, A class of preconditioners based on the (I + S(α))-type precondioning matrices for solving linear systems, J. Comput. Appl. Math., 189(2007), 1737-1748.

    Google Scholar

    [13] Y. Zhang, T. Z. Huang and X. P. Liu, Modified iterative methods for nonnegative matrices and M-matrices linear systems, Int. J. Computer Math. Appl., 50(2005), 1587-1602.

    Google Scholar

    [14] B. Zheng and L. Wang, Spectral radius and infinity norm of matrices, J. Math. Anal. Appl., 346(2008), 243-250.

    Google Scholar

Article Metrics

Article views(1919) PDF downloads(1154) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint