[1]
|
S. A. Campbell and Y. Yuan, Zero singularities of codimension two and three in delay differential equations, Nonlinearity, 21(2008), 2671-2691.
Google Scholar
|
[2]
|
S. Celikovsky and G. Chen, On the generalized Lorenz canonical form, Chaos Solitons Fractals, 26(2005), 1271-1276.
Google Scholar
|
[3]
|
G. Chen and T. Ueta, Yet another chaotic attractor, Int. J. Bifur. Chaos, 9(1999), 1465-1466.
Google Scholar
|
[4]
|
Y. Ding, W. Jiang and H. Wang, Delayed feedback control and bifurcation analysis of Rossler chaotic system, Nonlinear Dyn., 61(2010), 707-715.
Google Scholar
|
[5]
|
T. Faria and L. T. Magalhaes, Normal form for retarded functional differential equations and applications to Bogdanov-Takens singularity, J. Diff. Eqns, 122(1995), 201-224.
Google Scholar
|
[6]
|
T. Faria and L. T. Magalhaes, Normal form for retarded functional differential equations with parameters and applications to Hopf bifurcation, J. Diff. Eqns, 122(1995), 181-200.
Google Scholar
|
[7]
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983.
Google Scholar
|
[8]
|
S. Guo, G. Feng, X. Liao and Q. Liu, Hopf bifurcation control in a congestion control model via dynamic delayed feedback, Chaos, 18(2008), 043104.
Google Scholar
|
[9]
|
S. Guo, Y. Chen and J. Wu, Two-parameter bifurcations in a network of two neurons with multiple delays, J. Diff. Eqns, 244(2008), 444-486.
Google Scholar
|
[10]
|
J. Hale, Theory of Functional Differential Equations, Springer, New York, 1977.
Google Scholar
|
[11]
|
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.
Google Scholar
|
[12]
|
W. Jiang and Y. Yuan, Bogdanov-Takens singularity in Van der Pol's oscillator with delayed feedback, Phys. D, 227(2007), 149-161.
Google Scholar
|
[13]
|
W. Jiang and H. Wang, Hopf-transcritical bifurcation in retarded functional differential equations, Nonlinear Anal., 73(2010), 3626-3640.
Google Scholar
|
[14]
|
Y. A. Kuzentsov, Elements of Applied Bifurcation Theory, 2nd ed. Springer, New York, 1998.
Google Scholar
|
[15]
|
C. Liu, T. Liu, L. Liu and K. Liu, A new chaotic attractor, Chaos Solitons Fractals, 22(2004), 1031-1038.
Google Scholar
|
[16]
|
E. N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci., 20(1963), 130-141.
Google Scholar
|
[17]
|
J. Lü and G. Chen, A new chaotic attractor coined, Int. J. Bifur. Chaos, 12(2002), 659-661.
Google Scholar
|
[18]
|
J. Lü, G. Chen, D. Cheng and S. Celikovsky, Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifur. Chaos, 12(2002), 2917-2126.
Google Scholar
|
[19]
|
S. Ma, Q. Lu and Z. Feng, Double Hopf bifurcation for van der Pol-Duffing oscillator with parametric delay feedback control, J. Math. Anal. Appl., 338(2008), 993-1007.
Google Scholar
|
[20]
|
A. E. Matouk, Dynamical analysis, feedback control synchronization of Liu dynamical system, Nonlinear Anal., 69(2008), 3213-3132.
Google Scholar
|
[21]
|
K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys Lett A, 170(1992), 421-428.
Google Scholar
|
[22]
|
K. Pyragas, Control of chaos via extended delay feedback, Phys Lett A, 206(1995), 323-330.
Google Scholar
|
[23]
|
G. Revel, D. M. Alonso and J. L. Moiola, Interactions between oscillatory modes near 2:3 resonant Hopf-Hopf bifurcation, Chaos, 20(2010), 043106.
Google Scholar
|
[24]
|
K. Saleh and F. O. O. Wagener, Semi-global analysis of periodic and quasiperiodic normal-internal k:1 and k:2 resonances, Nonlinearity, 23(2010), 2219-2252.
Google Scholar
|
[25]
|
Y. Song and J. Wei, Bifurcation analysis for Chen's system with delayed feedback and its application to control of chaos, Chaos Solitons Fractals, 22(2004), 75-91.
Google Scholar
|
[26]
|
H. Wang and W. Jiang, Hopf-pitchfork bifurcation in van der Pol's oscillator with nonlinear delayed feedback, J. Math. Anal. Appl., 368(2010), 9-18.
Google Scholar
|
[27]
|
J. Wei, Bifurcation analysis in a scalar delay differential equation, Nonlinearity, 20(2007), 2483-2498.
Google Scholar
|
[28]
|
S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer, New York, 1990.
Google Scholar
|
[29]
|
M. Xiao and J. Cao, Bifurcation analysis and chaos control for Lü system with delayed feedback, Int. J. Bifur. Chaos, 17(2007), 4309-4322.
Google Scholar
|
[30]
|
M. Xu, Y. Wei and J. Wei, Bifurcation analysis of Rössler system with multiple delayed feedback, Electron. J. Qual. Theory Differ. Equ., 63(2010), 1-22.
Google Scholar
|
[31]
|
J. Xu, K. W. Chung and C. L. Chan, An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with delayed feedback, SIAM J. Appl. Dyn. Syst., 6(2007), 29-60.
Google Scholar
|
[32]
|
W. Xu, L. Wang, H. Rong, D. Li and Y. Niu, Analysis for the stabilization of impulsive control Liu's system, Chaos Solitons Fractals, 42(2009), 1143-1148.
Google Scholar
|
[33]
|
P. Yu, Y. Yuan and J. Xu, Study of double Hopf bifurcation and chaos for an oscillator with time delayed feedback, Commun. Nonlinear Sci. Numer. Simul., 7(2002), 69-91.
Google Scholar
|
[34]
|
C. Zhu and Z. Chen, Feedback control strategies for the Liu chaotic system, Phys Lett A, 372(2008), 4033-4036.
Google Scholar
|