2011 Volume 1 Issue 4
Article Contents

Jaume Giné. LIE SYMMETRIES AND THE CENTER PROBLEM[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 487-496. doi: 10.11948/2011033
Citation: Jaume Giné. LIE SYMMETRIES AND THE CENTER PROBLEM[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 487-496. doi: 10.11948/2011033

LIE SYMMETRIES AND THE CENTER PROBLEM

  • Fund Project:
  • In this short survey we discuss the narrow relation between the center problem and the Lie symmetries. It is well known that an analytic vector field X having a non-degenerate center has a non-trivial analytic Lie symmetry in a neighborhood of it, i.e. there exists an analytic vector field Y such that[X, Y]=µX. The same happens for a nilpotent center with an analytic first integral as can be seen from the recent results about nilpotent centers. From the recent results for nilpotent and degenerate centers it also can be proved that any nilpotent or degenerate center has a trivial smooth (of class C) Lie symmetry. It remains as open problem if there always exists also a non-trivial Lie symmetry for any nilpotent and degenerate center.
    MSC: 34C14
  • 加载中
  • [1] A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form, Qual. Theory Dyn. Syst. 1, 2(2000), 133-156.

    Google Scholar

    [2] M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents, Ann. Inst. Fourier (Grenoble), 44(1994), 465-494.

    Google Scholar

    [3] J. Chavarriga, I.A. García and J. Giné, On Lie's symmetries for planar polynomial differential systems, Nonlinearity, 14:4(2001), 863-880.

    Google Scholar

    [4] J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of two-dimensional flows, J. Differential Equations, 157(1999), 163-182.

    Google Scholar

    [5] J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analityc integrability for nilpotent centers, Ergodic Theory Dyn. Syst., 23(2003), 417-428.

    Google Scholar

    [6] W.W. Farr, C. Li, I.S. Labouriau and W.F. Langford, Degenerate Hopfbifurcation formulas and Hilbert's 16th problem, SIAM J. of Math. Anal., 20(1989), 13-29.

    Google Scholar

    [7] H. Giacomini, J. Giné and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems. J. Differential Equations, 227:2(2006), 406-426.

    Google Scholar

    [8] H. Giacomini, J. Giné and J. Llibre, Corrigendum to:"The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems". J. Differential Equations, 232:2(2007), 702-702.

    Google Scholar

    [9] J. Giné, The center problem for a linear center perturbed by homogeneous polynomials, Acta Math. Sin., 22:6(2006), 1613-1620.

    Google Scholar

    [10] J. Giné and M. Grau, Linearizability and integrability of vector fields via commutation, J. Math. Anal. Appl., 319:1(2006), 326-332.

    Google Scholar

    [11] J. Giné and J. Llibre, On the planar integrable differential systems, Z. Angew. Math. Phys., 62:4(2011), 567-574

    Google Scholar

    [12] J. Giné and S. Maza, Lie Symmetries for the orbital linearization of smooth planar vector fields around singular points, J. Math. Anal. Appl., 345:1(2008), 63-69.

    Google Scholar

    [13] J. Giné and S. Maza, The reversibility and the center problem, Nonlinear Anal., 74:2(2011), 695-704.

    Google Scholar

    [14] J. Giné and X. Santallusia, On the Poincaré-Liapunov constants and the Poincaré series, Appl. Math. (Warsaw), 28:1(2001), 17-30.

    Google Scholar

    [15] J. Giné and X. Santallusia, Implementation of a new algorithm of computation of the Poincaré-Liapunov constants, J. Comput. Appl. Math., 166:2(2004), 465-476.

    Google Scholar

    [16] Yu.S. Il'yashenko, Finiteness theorems for limit cycles. Translated from the Russian by H. H. McFaden. Translations of Mathematical Monographs, 94. American Mathematical Society, Providence, RI, 1991.

    Google Scholar

    [17] L. Mazzi and M. Sabatini, A Charaterization of centers via first integrals, J. Differential Equations, 76(1988), 222-237.

    Google Scholar

    [18] J.-F. Mattei and R. Moussu, Holonomie et intégrales premières. (French)[Holonomy and first integrals] Ann. Sci. École Norm. Sup. (4), 13:4(1980), 469-523.

    Google Scholar

    [19] P.J. Olver, Applications of Lie groups to differential equations, Graduate texts in mathematics 107, Springer-Verlag, 1986.

    Google Scholar

    [20] H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37(1881), 375-422; 8(1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, 3-84.

    Google Scholar

    [21] V.G. Romanovski and D.S. Shafer, The Center and Cyclicity Problems:A Computational Algebra Approach, Birkhäuser, Boston, 2009.

    Google Scholar

    [22] E. Strózyna and H. Żołądek, The analytic and normal form for the nilpotent singularity, J. Differential Equations, 179(2002), 479-537.

    Google Scholar

    [23] H. Stephani, Differential equations:their solution using symmetries, Cambridge University Press, 1989.

    Google Scholar

Article Metrics

Article views(1726) PDF downloads(698) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint