[1]
|
A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form, Qual. Theory Dyn. Syst. 1, 2(2000), 133-156.
Google Scholar
|
[2]
|
M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents, Ann. Inst. Fourier (Grenoble), 44(1994), 465-494.
Google Scholar
|
[3]
|
J. Chavarriga, I.A. García and J. Giné, On Lie's symmetries for planar polynomial differential systems, Nonlinearity, 14:4(2001), 863-880.
Google Scholar
|
[4]
|
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of two-dimensional flows, J. Differential Equations, 157(1999), 163-182.
Google Scholar
|
[5]
|
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analityc integrability for nilpotent centers, Ergodic Theory Dyn. Syst., 23(2003), 417-428.
Google Scholar
|
[6]
|
W.W. Farr, C. Li, I.S. Labouriau and W.F. Langford, Degenerate Hopfbifurcation formulas and Hilbert's 16th problem, SIAM J. of Math. Anal., 20(1989), 13-29.
Google Scholar
|
[7]
|
H. Giacomini, J. Giné and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems. J. Differential Equations, 227:2(2006), 406-426.
Google Scholar
|
[8]
|
H. Giacomini, J. Giné and J. Llibre, Corrigendum to:"The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems". J. Differential Equations, 232:2(2007), 702-702.
Google Scholar
|
[9]
|
J. Giné, The center problem for a linear center perturbed by homogeneous polynomials, Acta Math. Sin., 22:6(2006), 1613-1620.
Google Scholar
|
[10]
|
J. Giné and M. Grau, Linearizability and integrability of vector fields via commutation, J. Math. Anal. Appl., 319:1(2006), 326-332.
Google Scholar
|
[11]
|
J. Giné and J. Llibre, On the planar integrable differential systems, Z. Angew. Math. Phys., 62:4(2011), 567-574
Google Scholar
|
[12]
|
J. Giné and S. Maza, Lie Symmetries for the orbital linearization of smooth planar vector fields around singular points, J. Math. Anal. Appl., 345:1(2008), 63-69.
Google Scholar
|
[13]
|
J. Giné and S. Maza, The reversibility and the center problem, Nonlinear Anal., 74:2(2011), 695-704.
Google Scholar
|
[14]
|
J. Giné and X. Santallusia, On the Poincaré-Liapunov constants and the Poincaré series, Appl. Math. (Warsaw), 28:1(2001), 17-30.
Google Scholar
|
[15]
|
J. Giné and X. Santallusia, Implementation of a new algorithm of computation of the Poincaré-Liapunov constants, J. Comput. Appl. Math., 166:2(2004), 465-476.
Google Scholar
|
[16]
|
Yu.S. Il'yashenko, Finiteness theorems for limit cycles. Translated from the Russian by H. H. McFaden. Translations of Mathematical Monographs, 94. American Mathematical Society, Providence, RI, 1991.
Google Scholar
|
[17]
|
L. Mazzi and M. Sabatini, A Charaterization of centers via first integrals, J. Differential Equations, 76(1988), 222-237.
Google Scholar
|
[18]
|
J.-F. Mattei and R. Moussu, Holonomie et intégrales premières. (French)[Holonomy and first integrals] Ann. Sci. École Norm. Sup. (4), 13:4(1980), 469-523.
Google Scholar
|
[19]
|
P.J. Olver, Applications of Lie groups to differential equations, Graduate texts in mathematics 107, Springer-Verlag, 1986.
Google Scholar
|
[20]
|
H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37(1881), 375-422; 8(1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, 3-84.
Google Scholar
|
[21]
|
V.G. Romanovski and D.S. Shafer, The Center and Cyclicity Problems:A Computational Algebra Approach, Birkhäuser, Boston, 2009.
Google Scholar
|
[22]
|
E. Strózyna and H. Żołądek, The analytic and normal form for the nilpotent singularity, J. Differential Equations, 179(2002), 479-537.
Google Scholar
|
[23]
|
H. Stephani, Differential equations:their solution using symmetries, Cambridge University Press, 1989.
Google Scholar
|