Citation: | Serge Kräutle. EXISTENCE OF GLOBAL SOLUTIONS OF MULTICOMPONENT REACTIVE TRANSPORT PROBLEMS WITH MASS ACTION KINETICS IN POROUS MEDIA[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 497-515. doi: 10.11948/2011034 |
[1] | R. Adams and J. Fournier, Sobolev spaces, Elsevier Science, Oxford, (2nd ed.), 2003. |
[2] | J. Carrayrou, M. Kern and P. Knabner, Reactive transport benchmark of MoMaS, Comp. Geosci., 14(2010), 385-392. |
[3] | L.C. Evans, Partial differential equations, American Mathematical Society, Providence, 1998. |
[4] | Y. Fang, G.-T. Yeh and W.D. Burgos, A general paradigm to model reactionbased biochemical processes in batch systems, Water Resour. Res., 39(2003), 1083, doi:10.1029/2002WR001694. |
[5] | W.E. Fitzgibbon, J. Morgan and R. Sanders, Global existence and boundedness for a class of inhomogeneous semilinear parabolic systems, Nonlin. Ana. Theory, Methods and Applications, 19(1992), 885-899. |
[6] | J. Friedly and J. Rubin, Solute transport with multiple equilibrium-controlled or kinetically controlled chemical reactions, Water Resour. Res. 28(1992), 1935-1953. |
[7] | P. Hartman, Ordinary differential equations, John Wiley & Sons, 1964. |
[8] | F. Jones, Lebesgue integration on Euclidean space, Jones and Bartlett Publishers, 2001. |
[9] | S. Kräutle and P. Knabner, A reduction scheme for coupled multicomponent transport-reaction problems in porous media:Generalization to problems with heterogeneous equilibrium reactions, Water Resour. Res., 43(2007), W03429, doi:10.1029/2005WR004465. |
[10] | S. Kräutle, General multi-species reactive transport problems in porous media:Efficient numerical approaches and existence of global solutions, Habilitation thesis, University of Erlangen-Nuremberg, Germany, 2008. |
[11] | O.A. Ladyženskaja, V.A. Solonnikov and N.N. Uralceva, Linear and quasilinear equations of parabolic type, American Mathematical Society, 1968. |
[12] | P.C. Lichtner, Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems, Geochimica et Cosmochimica Acta, 49(1985), 779-800. |
[13] | W. Merz, Strong solutions for reaction-drift-diffusion problems in semiconductor technology, ZAMM, 81(2001), 623-635. |
[14] | W. Merz, Global existence result of the Monod model in bioremediation, Adv. Math. Sci. Appl., 15(2005), 709-726. |
[15] | M. Mincheva and D. Siegel, Stability of mass action reaction-diffusion systems, Nonlinear Analysis, 56(2004), 1105-1131. |
[16] | M. Mincheva and D. Siegel, Nonnegativity and positiveness of solutions to mass action reaction-diffusion systems, J. Math. Chem., 42(2007), 1135-1145, doi:10.1007/s10910-007-9292-0. |
[17] | M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM J. Math. Anal., 28(1997), 259-269. |
[18] | Z. Wu, J. Yin and C. Wang, Elliptic and parabolic equations, World Scientific Publishing, 2006. |