|
[1]
|
R. Adams and J. Fournier, Sobolev spaces, Elsevier Science, Oxford, (2nd ed.), 2003.
Google Scholar
|
|
[2]
|
J. Carrayrou, M. Kern and P. Knabner, Reactive transport benchmark of MoMaS, Comp. Geosci., 14(2010), 385-392.
Google Scholar
|
|
[3]
|
L.C. Evans, Partial differential equations, American Mathematical Society, Providence, 1998.
Google Scholar
|
|
[4]
|
Y. Fang, G.-T. Yeh and W.D. Burgos, A general paradigm to model reactionbased biochemical processes in batch systems, Water Resour. Res., 39(2003), 1083, doi:10.1029/2002WR001694.
Google Scholar
|
|
[5]
|
W.E. Fitzgibbon, J. Morgan and R. Sanders, Global existence and boundedness for a class of inhomogeneous semilinear parabolic systems, Nonlin. Ana. Theory, Methods and Applications, 19(1992), 885-899.
Google Scholar
|
|
[6]
|
J. Friedly and J. Rubin, Solute transport with multiple equilibrium-controlled or kinetically controlled chemical reactions, Water Resour. Res. 28(1992), 1935-1953.
Google Scholar
|
|
[7]
|
P. Hartman, Ordinary differential equations, John Wiley & Sons, 1964.
Google Scholar
|
|
[8]
|
F. Jones, Lebesgue integration on Euclidean space, Jones and Bartlett Publishers, 2001.
Google Scholar
|
|
[9]
|
S. Kräutle and P. Knabner, A reduction scheme for coupled multicomponent transport-reaction problems in porous media:Generalization to problems with heterogeneous equilibrium reactions, Water Resour. Res., 43(2007), W03429, doi:10.1029/2005WR004465.
Google Scholar
|
|
[10]
|
S. Kräutle, General multi-species reactive transport problems in porous media:Efficient numerical approaches and existence of global solutions, Habilitation thesis, University of Erlangen-Nuremberg, Germany, 2008.
Google Scholar
|
|
[11]
|
O.A. Ladyženskaja, V.A. Solonnikov and N.N. Uralceva, Linear and quasilinear equations of parabolic type, American Mathematical Society, 1968.
Google Scholar
|
|
[12]
|
P.C. Lichtner, Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems, Geochimica et Cosmochimica Acta, 49(1985), 779-800.
Google Scholar
|
|
[13]
|
W. Merz, Strong solutions for reaction-drift-diffusion problems in semiconductor technology, ZAMM, 81(2001), 623-635.
Google Scholar
|
|
[14]
|
W. Merz, Global existence result of the Monod model in bioremediation, Adv. Math. Sci. Appl., 15(2005), 709-726.
Google Scholar
|
|
[15]
|
M. Mincheva and D. Siegel, Stability of mass action reaction-diffusion systems, Nonlinear Analysis, 56(2004), 1105-1131.
Google Scholar
|
|
[16]
|
M. Mincheva and D. Siegel, Nonnegativity and positiveness of solutions to mass action reaction-diffusion systems, J. Math. Chem., 42(2007), 1135-1145, doi:10.1007/s10910-007-9292-0.
Google Scholar
|
|
[17]
|
M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM J. Math. Anal., 28(1997), 259-269.
Google Scholar
|
|
[18]
|
Z. Wu, J. Yin and C. Wang, Elliptic and parabolic equations, World Scientific Publishing, 2006.
Google Scholar
|