2011 Volume 1 Issue 4
Article Contents

Serge Kräutle. EXISTENCE OF GLOBAL SOLUTIONS OF MULTICOMPONENT REACTIVE TRANSPORT PROBLEMS WITH MASS ACTION KINETICS IN POROUS MEDIA[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 497-515. doi: 10.11948/2011034
Citation: Serge Kräutle. EXISTENCE OF GLOBAL SOLUTIONS OF MULTICOMPONENT REACTIVE TRANSPORT PROBLEMS WITH MASS ACTION KINETICS IN POROUS MEDIA[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 497-515. doi: 10.11948/2011034

EXISTENCE OF GLOBAL SOLUTIONS OF MULTICOMPONENT REACTIVE TRANSPORT PROBLEMS WITH MASS ACTION KINETICS IN POROUS MEDIA

  • We prove the existence and uniqueness of time-global solutions for multi-species multi-reaction advection-diffusion-dispersion problems with mass action kinetics in the space Wp2,1([0, T]×Ω). The reaction terms of mass action kinetics may contain polynomial expressions of arbitrarily high order. The difficulty to obtain an a priori estimate for the semilinar system of PDEs is tackled with a special Lyapunov function.
    MSC: 35A01;35B45;35K51;35K57;35K58;92E20
  • 加载中
  • [1] R. Adams and J. Fournier, Sobolev spaces, Elsevier Science, Oxford, (2nd ed.), 2003.

    Google Scholar

    [2] J. Carrayrou, M. Kern and P. Knabner, Reactive transport benchmark of MoMaS, Comp. Geosci., 14(2010), 385-392.

    Google Scholar

    [3] L.C. Evans, Partial differential equations, American Mathematical Society, Providence, 1998.

    Google Scholar

    [4] Y. Fang, G.-T. Yeh and W.D. Burgos, A general paradigm to model reactionbased biochemical processes in batch systems, Water Resour. Res., 39(2003), 1083, doi:10.1029/2002WR001694.

    Google Scholar

    [5] W.E. Fitzgibbon, J. Morgan and R. Sanders, Global existence and boundedness for a class of inhomogeneous semilinear parabolic systems, Nonlin. Ana. Theory, Methods and Applications, 19(1992), 885-899.

    Google Scholar

    [6] J. Friedly and J. Rubin, Solute transport with multiple equilibrium-controlled or kinetically controlled chemical reactions, Water Resour. Res. 28(1992), 1935-1953.

    Google Scholar

    [7] P. Hartman, Ordinary differential equations, John Wiley & Sons, 1964.

    Google Scholar

    [8] F. Jones, Lebesgue integration on Euclidean space, Jones and Bartlett Publishers, 2001.

    Google Scholar

    [9] S. Kräutle and P. Knabner, A reduction scheme for coupled multicomponent transport-reaction problems in porous media:Generalization to problems with heterogeneous equilibrium reactions, Water Resour. Res., 43(2007), W03429, doi:10.1029/2005WR004465.

    Google Scholar

    [10] S. Kräutle, General multi-species reactive transport problems in porous media:Efficient numerical approaches and existence of global solutions, Habilitation thesis, University of Erlangen-Nuremberg, Germany, 2008.

    Google Scholar

    [11] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Uralceva, Linear and quasilinear equations of parabolic type, American Mathematical Society, 1968.

    Google Scholar

    [12] P.C. Lichtner, Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems, Geochimica et Cosmochimica Acta, 49(1985), 779-800.

    Google Scholar

    [13] W. Merz, Strong solutions for reaction-drift-diffusion problems in semiconductor technology, ZAMM, 81(2001), 623-635.

    Google Scholar

    [14] W. Merz, Global existence result of the Monod model in bioremediation, Adv. Math. Sci. Appl., 15(2005), 709-726.

    Google Scholar

    [15] M. Mincheva and D. Siegel, Stability of mass action reaction-diffusion systems, Nonlinear Analysis, 56(2004), 1105-1131.

    Google Scholar

    [16] M. Mincheva and D. Siegel, Nonnegativity and positiveness of solutions to mass action reaction-diffusion systems, J. Math. Chem., 42(2007), 1135-1145, doi:10.1007/s10910-007-9292-0.

    Google Scholar

    [17] M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM J. Math. Anal., 28(1997), 259-269.

    Google Scholar

    [18] Z. Wu, J. Yin and C. Wang, Elliptic and parabolic equations, World Scientific Publishing, 2006.

    Google Scholar

Article Metrics

Article views(1818) PDF downloads(666) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint