Ying Liang, XiaoPei Li, YuZhen Mi. THE C1 SOLUTION OF THE HIGH DIMENSIONAL FEIGENBAUM-LIKE FUNCTIONAL EQUATION[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 517-522. doi: 10.11948/2011035
Citation: |
Ying Liang, XiaoPei Li, YuZhen Mi. THE C1 SOLUTION OF THE HIGH DIMENSIONAL FEIGENBAUM-LIKE FUNCTIONAL EQUATION[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 517-522. doi: 10.11948/2011035
|
THE C1 SOLUTION OF THE HIGH DIMENSIONAL FEIGENBAUM-LIKE FUNCTIONAL EQUATION
-
Mathematics and Computational School, Zhanjiang Normal University, Zhanjiang, Guangdong, 524048, China
-
Abstract
By constructing a structure operator quite different from before, and using the Schauder's fixed point theory, the existence and uniqueness of the C1 solutions of the high dimensional Feigenbaum-like functional equations are discussed.
-
-
References
[1]
|
H. Epstein, New proofs of the existence of the Feigenbaum function, Comm., Math. phys., 106(1986), 395-426.
Google Scholar
|
[2]
|
J. P. Eokmann and P. Wittwer, A computer assisted proof of the Feigenbaum conjectures, J. Stat. phys., 46(1987), 455-477.
Google Scholar
|
[3]
|
O. E. Lanford Ⅲ, A computer assisted proof of the Feigenbaum conjectures, Bull. Amer. Math Soc., 6(1987), 427-434.
Google Scholar
|
[4]
|
X. P. Li, A Class of Iterative Equation on a Banach Space,Journal of Sichuan University(N. SCI.E), 41(3)(2004), 505-510.
Google Scholar
|
[5]
|
B. D. Mestel, A. H. Osbaldestin and A. V. Tstgvintsev, Continued fractions and solutions of the Feigenbaum-Cvitanovie equation, C. R. Acad. Sci. Paris, 334(2002), 683-688. Sci., 125B:1(2005), 130-136.
Google Scholar
|
[6]
|
P. J. Mccarthy, The general exact bijective continuous solution of Feigenbaum's functional equation, Comm. Math.Phys., 91(1983), 431-443.
Google Scholar
|
[7]
|
C. J. Thompson and J. B. Mcguire, Asymptotic and essentially singular solution of the Feigenbaum equation, J. Stat. phys., 27(1982), 183-200.
Google Scholar
|
[8]
|
W. N. Zhang, Discussion on the differentiable solutions of the iterated equation, Nonlinear Analysis:Theory, Mathods & Applications, vol.15, 4(1990), 387-398.
Google Scholar
|
-
-
-