2011 Volume 1 Issue 4
Article Contents

Ying Liang, XiaoPei Li, YuZhen Mi. THE C1 SOLUTION OF THE HIGH DIMENSIONAL FEIGENBAUM-LIKE FUNCTIONAL EQUATION[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 517-522. doi: 10.11948/2011035
Citation: Ying Liang, XiaoPei Li, YuZhen Mi. THE C1 SOLUTION OF THE HIGH DIMENSIONAL FEIGENBAUM-LIKE FUNCTIONAL EQUATION[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 517-522. doi: 10.11948/2011035

THE C1 SOLUTION OF THE HIGH DIMENSIONAL FEIGENBAUM-LIKE FUNCTIONAL EQUATION

  • Fund Project:
  • By constructing a structure operator quite different from before, and using the Schauder's fixed point theory, the existence and uniqueness of the C1 solutions of the high dimensional Feigenbaum-like functional equations are discussed.
    MSC: 35D;35C
  • 加载中
  • [1] H. Epstein, New proofs of the existence of the Feigenbaum function, Comm., Math. phys., 106(1986), 395-426.

    Google Scholar

    [2] J. P. Eokmann and P. Wittwer, A computer assisted proof of the Feigenbaum conjectures, J. Stat. phys., 46(1987), 455-477.

    Google Scholar

    [3] O. E. Lanford Ⅲ, A computer assisted proof of the Feigenbaum conjectures, Bull. Amer. Math Soc., 6(1987), 427-434.

    Google Scholar

    [4] X. P. Li, A Class of Iterative Equation on a Banach Space,Journal of Sichuan University(N. SCI.E), 41(3)(2004), 505-510.

    Google Scholar

    [5] B. D. Mestel, A. H. Osbaldestin and A. V. Tstgvintsev, Continued fractions and solutions of the Feigenbaum-Cvitanovie equation, C. R. Acad. Sci. Paris, 334(2002), 683-688. Sci., 125B:1(2005), 130-136.

    Google Scholar

    [6] P. J. Mccarthy, The general exact bijective continuous solution of Feigenbaum's functional equation, Comm. Math.Phys., 91(1983), 431-443.

    Google Scholar

    [7] C. J. Thompson and J. B. Mcguire, Asymptotic and essentially singular solution of the Feigenbaum equation, J. Stat. phys., 27(1982), 183-200.

    Google Scholar

    [8] W. N. Zhang, Discussion on the differentiable solutions of the iterated equation, Nonlinear Analysis:Theory, Mathods & Applications, vol.15, 4(1990), 387-398.

    Google Scholar

Article Metrics

Article views(1651) PDF downloads(666) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint