[1]
|
A.V. Babin and M.I. Vishik, Attractors of evolution equations, North-Holland, Amsterdam, 1992.
Google Scholar
|
[2]
|
J.W. Cahn, On spinodal decomposition, Acta Metall., 9(1961), 795-801.
Google Scholar
|
[3]
|
J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 28(1958), 258-267.
Google Scholar
|
[4]
|
L. Cherfils, A. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., to appear.
Google Scholar
|
[5]
|
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations, Research in Applied Mathematics, vol. 37, JohnWiley, New York, 1994.
Google Scholar
|
[6]
|
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in R3, C. R. Acad. Sci. Paris Sér. I Math., 330(2000), 713-718.
Google Scholar
|
[7]
|
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nach., 272(2004), 11-31.
Google Scholar
|
[8]
|
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finitedimensional reduction for nonautonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 13(2005), 703-730.
Google Scholar
|
[9]
|
C.M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, Mathematical models for phase change problems, vol. 88, Edited by J.F. Rodrigues, International Series of Numerical Mathematics, Birkhäuser, Basel, 1989.
Google Scholar
|
[10]
|
P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Contin. Dyn. Syst., 10(2004), 211-238.
Google Scholar
|
[11]
|
S. Gatti, M. Grasselli, A. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134(2006), 117-127.
Google Scholar
|
[12]
|
A. Miranville, V. Pata and S. Zelik, Exponential attractors for singularly perturbed damped wave equations:a simple construction, Asymptot. Anal., 53(2007), 1-12.
Google Scholar
|
[13]
|
A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27(2004), 545-582.
Google Scholar
|
[14]
|
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations, Evolutionary Partial Differential Equations, vol. 4, Edited by C.M. Dafermos and M. Pokorny, Elsevier, Amsterdam, 103-200, 2008.
Google Scholar
|
[15]
|
B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations, Commun. Partial Diff. Eqns., 14(1989), 245-297.
Google Scholar
|
[16]
|
H. Gajewski and K. Zacharias, On a nonlocal phase separation model, J. Math. Anal. Appl., 286(2003), 11-31.
Google Scholar
|
[17]
|
G. Giacomin and J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits, J. Statist. Phys., 87(1997), 37-61.
Google Scholar
|
[18]
|
G. Giacomin and J.L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction Ⅱ. Interface motion, SIAM J. Appl. Math., 58(1998), 1707-1729.
Google Scholar
|
[19]
|
A. Novick-Cohen, The Cahn-Hilliard equation, Handbook of Differential Equations, Evolutionary Partial Differential Equations, vol. 4, Edited by C.M. Dafermos and M. Pokorny, Elsevier, Amsterdam, 201-228, 2008.
Google Scholar
|
[20]
|
Y. Oono and S. Puri, Computionally efficient modeling of ordering of quenched phases, Phys. Rev. Letters, 58(1987), 836-839.
Google Scholar
|
[21]
|
R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.
Google Scholar
|
[22]
|
S. Villain-Guillot, Phases modulées et dynamique de Cahn-Hilliard, Habilitation thesis,Université Bordeaux I, 2010.
Google Scholar
|