2011 Volume 1 Issue 4
Article Contents

Hildebrando M. Rodrigues, Jianhong Wu, Marcio Gameiro. ROBUST SYNCHRONIZATION OF PARAMETRIZED NONAUTONOMOUS DISCRETE SYSTEMS WITH APPLICATIONS TO COMMUNICATION SYSTEMS[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 537-547. doi: 10.11948/2011037
Citation: Hildebrando M. Rodrigues, Jianhong Wu, Marcio Gameiro. ROBUST SYNCHRONIZATION OF PARAMETRIZED NONAUTONOMOUS DISCRETE SYSTEMS WITH APPLICATIONS TO COMMUNICATION SYSTEMS[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 537-547. doi: 10.11948/2011037

ROBUST SYNCHRONIZATION OF PARAMETRIZED NONAUTONOMOUS DISCRETE SYSTEMS WITH APPLICATIONS TO COMMUNICATION SYSTEMS

  • We study synchronization of a coupled discrete system consisting of a Master System and a Slave System. The Master System usually exhibits chaotic or complicated behavior and transmits a signal with a chaotic component to the Slave System. The Slave System then recovers the original signal and removes the chaotic component. To ensure secured communication, the Master and the Slave systems must synchronize independent of the variation of the systems parameters and initial conditions. Here we develop a general approach and obtain some general results for synchronization of such coupled systems naturally arising from discretization of well-know continuous systems, and we illustrate general results with two specific examples:the discretized Lorenz system and a discretized nonlinear oscillator. We also present some simulations using MatLab to illustrate our discussions.
    MSC: 39A30;39A60;93D05
  • 加载中
  • [1] V. S. Afraimovich, N. N. Verichev and M. I. Rabinovich, Stochastic synchronization of oscillations in dissipative systems, (Russian), Izv. Vyssh. Uchebn. Zaved. Radiofiz., 29:9(1986), 1050-1060.

    Google Scholar

    [2] V. S. Afraimovich and H. M. Rodrigues, Uniform Dissipativeness and Synchronization on Nonautonomous Equations, Equadiff95, International Conference on Differential, World Scientific, (199), 3-17.

    Google Scholar

    [3] A. N. Carvalho, T. Dlotko and H. M. Rodrigues, Upper Semicontinuity of attractors and synchronization, Journal of Mathematical Analysis and Applications, 220(1998), 13-41.

    Google Scholar

    [4] L. R. A. Gabriel Filho, Comportamento Assintótico de sistemas não lineares discretos, Trabalho de Mestrado, Instituto de Ciências Matemáticas e de Computacão,USP, São Carlos, (2004). www.teses.usp.br/teses/disponiveis/55/55135/tde-12012005-230105/

    Google Scholar

    [5] M. Gameiro and H. M. Rodrigues, Applications of Robust Synchronization to Communication Systems, Applicable Analysis, 79(2001), 21-45.

    Google Scholar

    [6] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, A. M. S., 25(1988).

    Google Scholar

    [7] I. S. Labouriau and H. M. Rodrigues, Synchronization of coupled equations of Hodgkin-Huxley type, Dynamics of Continuous, Discrete and Impulsive Systems, Ser. A., 10(2003), 463-476.

    Google Scholar

    [8] J. P. LaSalle, The Stability and Control of Discrete Processes, Applied Mathematical Sciences 62, Springer-Verlag, (1986).

    Google Scholar

    [9] J. P. LaSalle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics 25, Providence, (1976).

    Google Scholar

    [10] J. P. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method, Mathematics in Science and Engineering 4, Academic Press, (1961).

    Google Scholar

    [11] E. Ott, T. Sauer and J. A. Yorke, Coping with Chaos:Analysis of Chaotic Data and the Exploitation of Chaotic Systems, Wiley Series in Nonlinear Science, (1994).

    Google Scholar

    [12] H. M. Rodrigues, Abstract Methods for Synchronization and Applications, Applicable Analysis, 62(1996), 263-296.

    Google Scholar

    [13] H. M. Rodrigues, L. F. C. Alberto, and N. C. Bretas, On the Invariance Principle. Generalizations and Aplications to Synchronism, IEEE Transactions on Circuit ans Systems, IEEE Transactions on Circuit ans Systems-I:Fundamental Theory and Applications, 47:5(2000), 730-739.

    Google Scholar

    [14] H. M. Rodrigues, L. F. C. Alberto, and N. C. Bretas, Uniform invariance principle and synchronization, robustness with respect to parameter variation, Journal of Differential Equations, 169:1(2001), 228-254.

    Google Scholar

    [15] H. M. Rodrigues, J. Wu, and L. R. A. Gabriel, Uniform Dissipativeness, Robust Synchronization and Location of the Attractor of Parametrized Nonautonomous Discrete Systems, Internacional Journal of Bifurcation and Chaos, 21:2(2011), 513-526.

    Google Scholar

Article Metrics

Article views(2022) PDF downloads(807) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint