[1]
|
S. Abbasbandy and T. Allahviranloo, Numerical solutions of fuzzy differential equations by taylor method, Comput. Methods Appl. Math. 2(2002) 113-124.
Google Scholar
|
[2]
|
S.Abbasbany, Homptopy analysis method for generalized Benjamin-BonaMahony equation, Zeitschriff fur angewandte Mathematik und Physik (ZAMP), 59(2008) 51-62.
Google Scholar
|
[3]
|
S.Abbasbany, Homptopy analysis method for the Kawahara equation, Nonlinear Analysis:Real Wrorld Applications, 11(2010) 307-312.
Google Scholar
|
[4]
|
T. Allahviranloo, N. Ahmady and E. Ahmady, A method for solving n-th order fuzzy linear differential equations, Comput. Math. Appl 86(2009) 730-742.
Google Scholar
|
[5]
|
M.A. Fariborzi Araghi and Sh.S. Behzadi, Numerical solution of nonlinear Volterra-Fredholm integro-differential equations using Homotopy analysis method, Journal of Applied Mathematics and Computing, DOI:10.1080/00207161003770394.
Google Scholar
|
[6]
|
B. Bede,Note on Numerical solutions of fuzzy differential equations by predictorcorrector method, Inform. Sci. 178(2008) 1917-1922.
Google Scholar
|
[7]
|
B. Bede and S.G. Gal, Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation, Fuzzy Set.Syst. 151(2005) 581-599.
Google Scholar
|
[8]
|
B. Bede, J. Imre, C. Rudas and L. Attila, First order linear fuzzy differential equations under generalized differentiability, Inform. Sci. 177(2007) 3627-3635.
Google Scholar
|
[9]
|
Sh.S.Behzadi, The convergence of homotopy methods for nonlinear KleinGordon equation, J.Appl.Math.Informatics, 28(2010)1227-1237.
Google Scholar
|
[10]
|
Sh.S.Behzadi and M.A.Fariborzi Araghi, The use of iterative methods for solving Naveir-Stokes equation, J.Appl.Math.Informatics, 29(2011) 1-15.
Google Scholar
|
[11]
|
Sh.S. Behzadi and M.A. Fariborzi Araghi, Numerical solution for solving Burger's-Fisher equation by using Iterative Methods, Mathematical and Computational Applications, In Press, 2011.
Google Scholar
|
[12]
|
J.J. Buckley and T. Feuring, Fuzzy differential equations, Fuzzy Set. Syst. 110(2000) 43-54.
Google Scholar
|
[13]
|
J.J. Buckley, T. Feuring and Y. Hayashi, Linear systems of first order ordinary differential equations:fuzzy initial conditions, Soft Comput. 6(2002) 415-421.
Google Scholar
|
[14]
|
J.J. Buckley, L.J. Jowers, Simulating Continuous Fuzzy Systems, SpringerVerlag, Berlin Heidelberg, 2006.
Google Scholar
|
[15]
|
Y. Chalco-Cano and H. Romn-Flores, On new solutions of fuzzy differential equations, Chaos Soliton. Fractals (2006) 1016-1043.
Google Scholar
|
[16]
|
R. Goetschel and W. Voxman, Elementary calculus. Fuzzy Sets Systems, 18(1986) 31-43.
Google Scholar
|
[17]
|
A.Khastan, J.J. Nieto and R. Rodriguez -Lopez, Variation of constant formula for first order fuzzy differential equations, Fuzzy Sets and Systems, In press,2011.
Google Scholar
|
[18]
|
S.J.Liao, Beyond Perturbation:Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press,Boca Raton,2003.
Google Scholar
|
[19]
|
S.J.Liao, Notes on the homotopy analysis method:some definitions and theorems, Communication in Nonlinear Science and Numerical Simulation 14(2009)983-997.
Google Scholar
|
[20]
|
M.L. Puri and D. Ralescu, Fuzzy random variables, J. Math. Anal. Appl, 114(1986) 409-422.
Google Scholar
|