[1]
|
H. Added and S. Added, Equations of Langmuir turbulence and nonlinear Schrödinger equation:smoothness and approximation, J. Funct. Anal., 79(1988), 183-210.
Google Scholar
|
[2]
|
I. Bejenaru, S. Herr, J. Holmer and D.Tataru, On the 2d Zakharov system with L2 Schrödinger data, Nonlinearity., 22(2009), 1063-1089.
Google Scholar
|
[3]
|
I. Bejenaru and S. Herr, Convolutions of singular measures and applications to the Zakharov system, arXiv:1009.3250.
Google Scholar
|
[4]
|
J. Bourgain and J. Colliander, On wellposedness of the Zakharov system, Internat. Math. Res. Notices., 11(1996), 515-546.
Google Scholar
|
[5]
|
J. Colliander, J. Holmer and N. Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gorden-Schrödinger systems, Trans. Amer. Math. Soc., 360(2008), 4619-4638.
Google Scholar
|
[6]
|
J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for theZakharov system, J.Funct.Anal., 151(1997), 384-436.
Google Scholar
|
[7]
|
B. Guo and G.Yuan, The Cauchy problem for the Zakharov equations arising from ion-acoustic modes, Proceed Soc. Edingburgh., 126(1996), 811-820.
Google Scholar
|
[8]
|
Z. Guo, L. Peng and B. Wang, Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation, J. Differential. Equation., 10(2009), 3864-3901.
Google Scholar
|
[9]
|
L. Han, J. Zhang, Z. Gan and B. Guo, On the limit behavior of the magnetic Zakharov system, Science China Mathematics., Doi:10.1007/s11425-011-4325-3,(2012).
Google Scholar
|
[10]
|
A. D. Ionescu and C. E. Kenig, Global well-posedness of the Benjamin-Ono equation in Low-regularity spaces, J. Amer. Math. Soc., 20(2007), 753-798.
Google Scholar
|
[11]
|
N. Masmoudi and K. Nakanishi, From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation, J. Hyperbolic Differ. Equ., 2(2005), 975-1008.
Google Scholar
|
[12]
|
N. Masmoudi and K. Nakanishi, Energy convergence for singular limitsh of Zakharov type systems, Invent. Math., 172(2008), 535-583.
Google Scholar
|
[13]
|
L. Molinet and F. Ribaud, The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev sapces of negative order, Indiana Univ. Math. J., 50(2001), 1745-1776.
Google Scholar
|
[14]
|
S. H. Schochet and M. I. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Commun. Math. Phys., 106(1986), 569-580.
Google Scholar
|
[15]
|
V. D. Shapiro et al, Wave collapse at the lower-hybrid resonance, Phys. Fluids B., 5(1993), 3148-3162.
Google Scholar
|
[16]
|
H. Triebel, Theory of function spaces, Birkhäuser, 1983.
Google Scholar
|