2012 Volume 2 Issue 1
Article Contents

Boling Guo, Lijia Han, Zaihui Gan. CAUCHY PROBLEM FOR THE ZAKHAROV SYSTEM ARISING FROM ION-ACOUSTIC MODES WITH LOW REGULARITY DATA[J]. Journal of Applied Analysis & Computation, 2012, 2(1): 11-28. doi: 10.11948/2012002
Citation: Boling Guo, Lijia Han, Zaihui Gan. CAUCHY PROBLEM FOR THE ZAKHAROV SYSTEM ARISING FROM ION-ACOUSTIC MODES WITH LOW REGULARITY DATA[J]. Journal of Applied Analysis & Computation, 2012, 2(1): 11-28. doi: 10.11948/2012002

CAUCHY PROBLEM FOR THE ZAKHAROV SYSTEM ARISING FROM ION-ACOUSTIC MODES WITH LOW REGULARITY DATA

  • Fund Project:
  • We prove local well-posedness results for the Zakharov System Arising from Ion-Acoustic Modes in two spacial dimension with large initial data in low regularity Sobolev space (H1/2L2×H-1. Using "derivative sharing", the local well-posedness results in (H1/2-δHδ×H-1+δ are also obtained, for any 0 ≤ δ ≤ 1/2.
    MSC: 35Q55;35L70
  • 加载中
  • [1] H. Added and S. Added, Equations of Langmuir turbulence and nonlinear Schrödinger equation:smoothness and approximation, J. Funct. Anal., 79(1988), 183-210.

    Google Scholar

    [2] I. Bejenaru, S. Herr, J. Holmer and D.Tataru, On the 2d Zakharov system with L2 Schrödinger data, Nonlinearity., 22(2009), 1063-1089.

    Google Scholar

    [3] I. Bejenaru and S. Herr, Convolutions of singular measures and applications to the Zakharov system, arXiv:1009.3250.

    Google Scholar

    [4] J. Bourgain and J. Colliander, On wellposedness of the Zakharov system, Internat. Math. Res. Notices., 11(1996), 515-546.

    Google Scholar

    [5] J. Colliander, J. Holmer and N. Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gorden-Schrödinger systems, Trans. Amer. Math. Soc., 360(2008), 4619-4638.

    Google Scholar

    [6] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for theZakharov system, J.Funct.Anal., 151(1997), 384-436.

    Google Scholar

    [7] B. Guo and G.Yuan, The Cauchy problem for the Zakharov equations arising from ion-acoustic modes, Proceed Soc. Edingburgh., 126(1996), 811-820.

    Google Scholar

    [8] Z. Guo, L. Peng and B. Wang, Global well-posedness and inviscid limit for the Korteweg-de Vries-Burgers equation, J. Differential. Equation., 10(2009), 3864-3901.

    Google Scholar

    [9] L. Han, J. Zhang, Z. Gan and B. Guo, On the limit behavior of the magnetic Zakharov system, Science China Mathematics., Doi:10.1007/s11425-011-4325-3,(2012).

    Google Scholar

    [10] A. D. Ionescu and C. E. Kenig, Global well-posedness of the Benjamin-Ono equation in Low-regularity spaces, J. Amer. Math. Soc., 20(2007), 753-798.

    Google Scholar

    [11] N. Masmoudi and K. Nakanishi, From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation, J. Hyperbolic Differ. Equ., 2(2005), 975-1008.

    Google Scholar

    [12] N. Masmoudi and K. Nakanishi, Energy convergence for singular limitsh of Zakharov type systems, Invent. Math., 172(2008), 535-583.

    Google Scholar

    [13] L. Molinet and F. Ribaud, The Cauchy problem for dissipative Korteweg de Vries equations in Sobolev sapces of negative order, Indiana Univ. Math. J., 50(2001), 1745-1776.

    Google Scholar

    [14] S. H. Schochet and M. I. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence, Commun. Math. Phys., 106(1986), 569-580.

    Google Scholar

    [15] V. D. Shapiro et al, Wave collapse at the lower-hybrid resonance, Phys. Fluids B., 5(1993), 3148-3162.

    Google Scholar

    [16] H. Triebel, Theory of function spaces, Birkhäuser, 1983.

    Google Scholar

Article Metrics

Article views(1993) PDF downloads(937) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint