2012 Volume 2 Issue 2
Article Contents

Yonglei Fang, Qinghong Li. A CLASS OF EXPLICIT RATIONAL SYMPLECTIC INTEGRATORS[J]. Journal of Applied Analysis & Computation, 2012, 2(2): 161-171. doi: 10.11948/2012012
Citation: Yonglei Fang, Qinghong Li. A CLASS OF EXPLICIT RATIONAL SYMPLECTIC INTEGRATORS[J]. Journal of Applied Analysis & Computation, 2012, 2(2): 161-171. doi: 10.11948/2012012

A CLASS OF EXPLICIT RATIONAL SYMPLECTIC INTEGRATORS

  • Fund Project:
  • In this paper, a class of rational explicit symplectic integrators for one-dimensional oscillatory Hamiltonian problems is presented. These methods are zero-dissipative, and of first algebraic order and high phase-lag order. By means of composition technique, we construct second and fourth order methods with high phase-lag order of this type. Based on our ideas, three applicable explicit symplectic schemes with algebraic order one, two and four are derived, respectively. We report some numerical results to illustrate the good performance of our methods.
    MSC: 65L05
  • 加载中
  • [1] L. Brusa and L. Nigro, A one-step method for direct integration of structual dynamic equations, Inter. J. Numer. Meth. Eng., 15(1980), 685-699.

    Google Scholar

    [2] M. Calvo, L.O. Jay, J.I. Montijano and L. Randéz, Approximate compositions of a near identity map by multi-revolution RK methods, Numer. Math., 97(2004), 635-666.

    Google Scholar

    [3] J. M. Franco, I. Gomez and L. Randez, Four-stage syplectic and P-stable SDIRKN methods with dispersion of high order, Numer. Algor., 26(2001), 347-363.

    Google Scholar

    [4] E. Hairer, Ch. Lubich and G. Wanner, Numerical Geometric Integration, Springer, Berlin, 2002.

    Google Scholar

    [5] P.J. van der Houwen and B.P. Sommeijer, Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solutions, SIAM J. Numer. Anal., 24(1987), 595-617.

    Google Scholar

    [6] P.J. van der Houwen and B.P. Sommeijer, Diagonally implicit Runge-KuttaNyström methods for oscillatory problems, SIAM J. Numer. Anal., 26(1989), 414-429.

    Google Scholar

    [7] J.D. Lambert and I.A. Watson, Symmetric multistep methods for periodic initial value problems, J. Inst. Math. Appl., 18(1976), 189-202.

    Google Scholar

    [8] B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamcis, Cambridge University Press, Cambridge, 2004.

    Google Scholar

    [9] M. Li and A. Xiao, Characterization and construction of Poisson/symplectic and symmetric multi-revolution implicit RK methods of high order, Appl. Numer. Math., 58(2008), 915-930.

    Google Scholar

    [10] Q. Li and X. Wu, A two-step explicit P-stable method of high phase-lag order for second order IVPs, Appl. Math. Comput., 151(2004), 17-26.

    Google Scholar

    [11] Q. Li and X. Wu, A two-step explicit P-stable method of high phase-lag order for linear periodic IVPs, J. Comput. Appl. Math., 200(2007), 287-296.

    Google Scholar

    [12] R.I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM J. Sci. Comp., 16(1995), 151-168.

    Google Scholar

    [13] J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian Problems, Chapman and Hall, London, 1994.

    Google Scholar

Article Metrics

Article views(1856) PDF downloads(1112) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint