[1]
|
W. G. Aiello and H. I. Freedman,A time-delay model of single-species growth with stage structure, Math. Biosci., 101(1990), 139-153.
Google Scholar
|
[2]
|
S. Dunbar, Traveling waves in diffusive predator-prey equations:periodic orbits and point-to periodic heteroclinic orbits, SIAM J. Appl. Math., 46(1986), 1057-1078.
Google Scholar
|
[3]
|
B.S. Goh,Global stability in two species interactions, J. Math. Biol., 3(1976), 313-318.
Google Scholar
|
[4]
|
S. A. Gourley and Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, Proc. R. Soc. Lond. A., 459(2003), 1563-1579.
Google Scholar
|
[5]
|
J. Huang and X. Zou, Traveling wavefronts in diffusive and cooperative LotkaVolterra system with delay, J. Math. Anal. Appl., 271(2002), 455-466.
Google Scholar
|
[6]
|
W. T. Li, G. Lin and S. G. Ruan, Existence of traveling solutions in delayed reacton-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19(2006), 1253-1273.
Google Scholar
|
[7]
|
K. Li and X. Li, Traveling wave solutions in diffusive and competitioncooperation systems with delays, IMA J. of Applied Mathematics, 74(2009), 604-621.
Google Scholar
|
[8]
|
M. Liu and K. Wang, Global stability of stage-structured predatorCprey models with BeddingtonCDeAngelis functional response, Commun Nonlinear Sci. Numer. Simul., doi:10.1016/j.cnsns.2010.12.026(2011).
Google Scholar
|
[9]
|
S. W. Ma, Traveling wavefronts for delayed reaction-diffusion systems via some fixed ponint theorems, J. Differential Equations, 171(2001), 294-314.
Google Scholar
|
[10]
|
J. D. Murray, Mathematical Biology:I. An Introduction (3rd Ed.), Springer, New York, 2002.
Google Scholar
|
[11]
|
Y. Qu and J. J. Wei, Bifurcation analysis in a time-delay model for preyCpredator growth with stage-structure, Nonlinear Dyn. 49(2007), 285-294.
Google Scholar
|
[12]
|
R. Redlinger, Existence theorems for semilinear parabolic systems with functionals, Nonlinear Analysis, 8(1984), 667-682.
Google Scholar
|
[13]
|
K. W. Schaaf, Asymptotic behavior and travelling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc., 302(1987), 587-615.
Google Scholar
|
[14]
|
X. Shi, X. Zhou and X. Y. Song, Analysis of a stage-structured predator-prey model with Crowley-Martin function, J. Appl. Math. Comput., 36(2010), 459-472.
Google Scholar
|
[15]
|
N. Shigesada and K. Kawasaki, Biological invasions:Theory and practice, Oxford University Press, Oxford, 1997.
Google Scholar
|
[16]
|
X. Y. Song and L. S. Chen, Optimal harvesting and stability for a predator-prey system with stage structure, Acta. Math. Applicate. Sin., 18(2002), 307-314.
Google Scholar
|
[17]
|
Q. R. Wang and K. Zhou, Traveling wave solutions in delayed reaction-diffusion systems with mixed monotonicity, J. Com. Appl. Math., 223(2010), 2549-2562.
Google Scholar
|
[18]
|
P. X. Weng, H. X. Huang and J. H. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction, IMA J. Appl. Math., 68(2003), 409-439.
Google Scholar
|
[19]
|
J. H. Wu and X. F. Zou, Traveling wave fronts of reactionCdiffusion systems with delay, J. Dyn. Diff. Equat., 13(2001), 651-687.
Google Scholar
|
[20]
|
R. Xu, M. A. J. Chaplain and F. A. Davidson, Persistence and global stability of a ratio-dependent predatorCprey model with stage structure, Appl. Math. Comput., 158(2004), 729-744.
Google Scholar
|
[21]
|
Z. Q. Xu and P. X. Weng, Traveling waves in a convolution model with infinite distributed delay and non-monotonicity, Nonlinear Anal. RWA, 12(2011), 633-647.
Google Scholar
|
[22]
|
E. Zeidler, Nonlinear Functional Analysis and its Applications, I, Fixed-point Theorems, Springer-Verlag, New York, 1986.
Google Scholar
|