David C. Ni. ENTROPY COMPUTATION ON THE UNIT DISC OF A MEROMORPHIC MAP[J]. Journal of Applied Analysis & Computation, 2012, 2(2): 193-203. doi: 10.11948/2012014
Citation: |
David C. Ni. ENTROPY COMPUTATION ON THE UNIT DISC OF A MEROMORPHIC MAP[J]. Journal of Applied Analysis & Computation, 2012, 2(2): 193-203. doi: 10.11948/2012014
|
ENTROPY COMPUTATION ON THE UNIT DISC OF A MEROMORPHIC MAP
-
Research, Direxion Technology, Taipei, Taiwan, China
-
Abstract
We propose a new definition of entropy based on both topological and metric entropy for the meromorphic maps. The entropy is then computed on the unit disc of a meromorphic map, which is called the extended Blaschke function, and is a nonlinear extension of the normalized Lorentz transformation.
We find that the defined entropy is computable and observe several interested results, such as maximal entropy, entropy overshoot due to topological transition, entropy reduction to zero, and scaling invariance in conjunction with parameter space.
-
-
References
[1]
|
R. Adler, A. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114(1965), 309-319.
Google Scholar
|
[2]
|
W. Blaschke, Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen, Berichte Math.-Phys. Kl., Sächs. Gesell. der Wiss. Leipzig, 67(1915), 194-200.
Google Scholar
|
[3]
|
Conference proceedings of Frontiers of Complex dynamics (in preparation), Banff Center, Alberta, Canada, Feb. 2011.
Google Scholar
|
[4]
|
T. Donarowicz, Entropy in Dynamical Systems, Cambridge University Press, May 2011(ISBN:9780521888851).
Google Scholar
|
[5]
|
J. Milnor, Is Entropy Effectively Computable, Jan. 2002.
Google Scholar
|
[6]
|
D. C. Ni, Numerical Studies of Lorentz Transformation, presented in 7th EASIAM, Kitakyushu, Japan, June, 2011, 27-29.
Google Scholar
|
-
-
-