2012 Volume 2 Issue 2
Article Contents

Kuilin Wu. ON THE MONOTONICITY OF THE PERIOD FUNCTION OF REVERSIBLE CENTERS[J]. Journal of Applied Analysis & Computation, 2012, 2(2): 205-212. doi: 10.11948/2012015
Citation: Kuilin Wu. ON THE MONOTONICITY OF THE PERIOD FUNCTION OF REVERSIBLE CENTERS[J]. Journal of Applied Analysis & Computation, 2012, 2(2): 205-212. doi: 10.11948/2012015

ON THE MONOTONICITY OF THE PERIOD FUNCTION OF REVERSIBLE CENTERS

  • Fund Project:
  • In this paper we study the period function of centers for a class of reversible systems and give a criteria to determine the monotonicity of the period functions.
    MSC: 34C05;34A34;34C14
  • 加载中
  • [1] J. Chavarriga and M. Sabatini, A survey of isochronous centers, Qual. Theory Dyn. Syst., 1(1999), 1-70.

    Google Scholar

    [2] F. Chen, C. Li, J. Llibre and Z. Zhang, A unified proof on the weak Hilbert 16th problem for n=2, J. Differential Equations, 221(2006), 309-342.

    Google Scholar

    [3] C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations, 69(1987), 310-321.

    Google Scholar

    [4] C. Chicone and M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc., 312(1989), 433-486.

    Google Scholar

    [5] C. Chicone, Review in MathSciNet, ref. 94hL58072.

    Google Scholar

    [6] A. Gasull, C. Liu and J. Yang, On the number of critical periods for planar polynomial systems of arbitrary degree, J. Differential Equations, 249(2010), 684-692.

    Google Scholar

    [7] M. Grau and J. Villadelprat, Bifurcation of critical periods from Pleshkan's isochrones, J. London Math. Soc., 81(2010), 142-160.

    Google Scholar

    [8] I. D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math., 122(1998), 107-161.

    Google Scholar

    [9] H. Liang and Y. Zhao, On the period function of reversible quadratic centers with their orbits inside quartics, Nonlinear Anal., 71(2009), 5655-5671.

    Google Scholar

    [10] F. Mañosas and J. Villadelprat, The bifurcation set of the period function of the dehomogenized Loud's centers is bounded, Proc. Amer. Math. Soc., 136(2008), 1631-642.

    Google Scholar

    [11] F. Mañosas and J. Villadelprat, Criteria to bound the number of critical periods, J. Differential Equations, 246(2009), 2415-2433.

    Google Scholar

    [12] P. Mardešić, C. Rousseau, and B. Toni, Linearization of isochronous centers, J. Differential Equations, 121(1995), 67-108.

    Google Scholar

    [13] P. Mardešić, D. Marín and J. Villadelprat, The period function of reversible quadratic center, J. Differential Equations, 224(2006), 120-171.

    Google Scholar

    [14] M. Sabatini, On the period function of Liénard system, J. Differential Equations, 152(1999), 467-487.

    Google Scholar

    [15] J. Villadelprat, On the reversible quadratic centers with monotonic period function, Proc. Amer. Math. Soc., 135(2007), 2555-2565.

    Google Scholar

    [16] J. Villadelprat, The period function of the generalized Lotka-Volterra centers, J. Math. Anal. Appl., 341(2007), 834-854.

    Google Scholar

    [17] K. Wu and Y. Zhao, Isochronicity for a class of reversible systems, J. Math. Anal. Appl., 365(2010), 300-307.

    Google Scholar

    [18] Y. Zhao, The monotonicity of period function for codimension four quadratic system Q4, J. Differential Equations, 185(2002), 370-387.

    Google Scholar

    [19] Y. Zhao, On the monotonicity of the period function of a quadratic system, Discrete Contin. Dyn. Syst., 13(2005), 795-810.

    Google Scholar

Article Metrics

Article views(1488) PDF downloads(666) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint