[1]
|
J. Chavarriga and M. Sabatini, A survey of isochronous centers, Qual. Theory Dyn. Syst., 1(1999), 1-70.
Google Scholar
|
[2]
|
F. Chen, C. Li, J. Llibre and Z. Zhang, A unified proof on the weak Hilbert 16th problem for n=2, J. Differential Equations, 221(2006), 309-342.
Google Scholar
|
[3]
|
C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations, 69(1987), 310-321.
Google Scholar
|
[4]
|
C. Chicone and M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer. Math. Soc., 312(1989), 433-486.
Google Scholar
|
[5]
|
C. Chicone, Review in MathSciNet, ref. 94hL58072.
Google Scholar
|
[6]
|
A. Gasull, C. Liu and J. Yang, On the number of critical periods for planar polynomial systems of arbitrary degree, J. Differential Equations, 249(2010), 684-692.
Google Scholar
|
[7]
|
M. Grau and J. Villadelprat, Bifurcation of critical periods from Pleshkan's isochrones, J. London Math. Soc., 81(2010), 142-160.
Google Scholar
|
[8]
|
I. D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math., 122(1998), 107-161.
Google Scholar
|
[9]
|
H. Liang and Y. Zhao, On the period function of reversible quadratic centers with their orbits inside quartics, Nonlinear Anal., 71(2009), 5655-5671.
Google Scholar
|
[10]
|
F. Mañosas and J. Villadelprat, The bifurcation set of the period function of the dehomogenized Loud's centers is bounded, Proc. Amer. Math. Soc., 136(2008), 1631-642.
Google Scholar
|
[11]
|
F. Mañosas and J. Villadelprat, Criteria to bound the number of critical periods, J. Differential Equations, 246(2009), 2415-2433.
Google Scholar
|
[12]
|
P. Mardešić, C. Rousseau, and B. Toni, Linearization of isochronous centers, J. Differential Equations, 121(1995), 67-108.
Google Scholar
|
[13]
|
P. Mardešić, D. Marín and J. Villadelprat, The period function of reversible quadratic center, J. Differential Equations, 224(2006), 120-171.
Google Scholar
|
[14]
|
M. Sabatini, On the period function of Liénard system, J. Differential Equations, 152(1999), 467-487.
Google Scholar
|
[15]
|
J. Villadelprat, On the reversible quadratic centers with monotonic period function, Proc. Amer. Math. Soc., 135(2007), 2555-2565.
Google Scholar
|
[16]
|
J. Villadelprat, The period function of the generalized Lotka-Volterra centers, J. Math. Anal. Appl., 341(2007), 834-854.
Google Scholar
|
[17]
|
K. Wu and Y. Zhao, Isochronicity for a class of reversible systems, J. Math. Anal. Appl., 365(2010), 300-307.
Google Scholar
|
[18]
|
Y. Zhao, The monotonicity of period function for codimension four quadratic system Q4, J. Differential Equations, 185(2002), 370-387.
Google Scholar
|
[19]
|
Y. Zhao, On the monotonicity of the period function of a quadratic system, Discrete Contin. Dyn. Syst., 13(2005), 795-810.
Google Scholar
|