[1]
|
V.I. Arnold, Geometrical methods in the theory of ordinary differential equations, Springer-Verlag, Berlin, 1988.
Google Scholar
|
[2]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four:(I) Saddle loop and two saddle cycle, J. Differential Equations, 176(2001), 114-157.
Google Scholar
|
[3]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four:(Ⅱ) Cuspidal loop, J. Differential Equations, 175(2001), 209-243.
Google Scholar
|
[4]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four:(Ⅲ) Global center, J. Differential Equations, 188(2003), 473-511.
Google Scholar
|
[5]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four:(IV) Figure eight-loop, J. Differential Equations, 188(2003), 512-514.
Google Scholar
|
[6]
|
F. Dumortier, J. Llibre and J. C. Artés, Qualitative theory of planar differential systems, Springer-Verlag Berlin Heidelberg, 2006.
Google Scholar
|
[7]
|
F. Dumortie and R. Roussarie, Abelian integrals and limit cycles, J. Differential Equations, 227(2006), 116-165.
Google Scholar
|
[8]
|
M. Grau, F. Mañnosas and J. Villadelprat, A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363(2011), 109-129.
Google Scholar
|
[9]
|
M. Han, Bifurcation of invariant tori and subharmonic solutions for periodic perturbed system, Sci. China Ser. A, 37(1994), 1325-1336.
Google Scholar
|
[10]
|
M. Han, Liapunov constants and Hopf cyclicity of Liénard systems, Ann. of Diff. Eqs., 15:2(1999), 113-126.
Google Scholar
|
[11]
|
M. Han and J. Li, Lower bounds for the Hilbert number of polynomial systems, J. Differential Equations, 252(2012), 3278-3304.
Google Scholar
|
[12]
|
M. Han, J. Yang and P. Yu, Hopf bifurcations for near-Hamiltonian systems, Internat. J. Bifur. Chaos, 19(2009), 4117-4130.
Google Scholar
|
[13]
|
M. Han, H. Zang and J. Yang, Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system, J. Differential Equations, 246(2009), 129-163.
Google Scholar
|
[14]
|
J. Llibre, C. A. Mereu and A.M. Teixeira, Limit cycles of the generalized polynomial Liénard differential equations, Math. Proc. Cambridge Philos. Soc., 148(2010), 363-383.
Google Scholar
|
[15]
|
J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifurcation Chaos, 13(2003), 47-106.
Google Scholar
|
[16]
|
F. Mañnosas and J. Villadelprat, Bounding the number of zeros of certain Abelian integrals, J. Differential Equations, 251(2011), 1656-1669.
Google Scholar
|
[17]
|
R. Roussarie, On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields, Bol. Soc. Brasil. Mat., 17(1986), 67-101.
Google Scholar
|
[18]
|
X. Sun, M. Han and J. Yang, Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Analysis, 74(2011), 2948-2965.
Google Scholar
|
[19]
|
A.N. Varchenko, Estimate of the number of zeros of Abelian integrals depending on parameters and limit cycles, Funct. Anal. Appl., 18(1984), 98-108.
Google Scholar
|
[20]
|
J. Wang and D. Xiao, On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems with one nilpotent saddle, J. Differential Equations, 250(2011), 2227-2243.
Google Scholar
|
[21]
|
J. Yang and M. Han, Limit cycle bifurcations of some Liénard systems with a cuspidal loop and a homoclinic loop, Chaos Solitons & Fractals, 44(2011), 269-289.
Google Scholar
|
[22]
|
P. Yu, Computation of limit cycles|the second part of Hilbert's 16th problem, Fields Inst. Commun., 49(2006), 151-177.
Google Scholar
|
[23]
|
H. Zang, M. Han and D. Xiao, On Melnikov functions of a homoclinic loop through a nilpotent saddle for planar near-Hamiltonian system, J. Differential Equations, 245(2008), 1086-1111.
Google Scholar
|