[1]
|
M.J. Ablowitz and P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Math. Soc. Lecture Note Ser., vol. 149, Cambridge, England, 1991.
Google Scholar
|
[2]
|
N. Carmichael and M.D. Quinn, Fixed point methods in nonlinear control, Lecture Notes in Control and Information Society, vol. 75, Springer, Berlin, 1984.
Google Scholar
|
[3]
|
D.N. Chalishajar, Controllability of nonlinear integro-differential third order dispersion system, J. Math. Anal. Appl., 348(2008), 480-486.
Google Scholar
|
[4]
|
R.K. George, D.N. Chalishajar and A.K. Nandakumaran, Exact controllability of the nonlinear third-order dispersion equation, J. Math. Anal. Appl., 332(2007), 1028-1044.
Google Scholar
|
[5]
|
J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funk. Ekvac., 21(1978), 11-41.
Google Scholar
|
[6]
|
J.K. Hale and S.M. Lunel, Introduction to functional differential equation, Appl. Math. Sci., vol. 99, Springer-Verlag, New York, 1993.
Google Scholar
|
[7]
|
Y. Hino, S. Murakami and T. Naito, Functional differential equations with infinite delay, Lecture Notes in Mathematics, vol. 1473, Springer-Verlag, Berlin, 1991.
Google Scholar
|
[8]
|
E. Infeld and G. Rowlands, Nonlinear waves, solitons and chaos, Cambridge, England, 2000.
Google Scholar
|
[9]
|
A. Pazy, Semigroup of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.
Google Scholar
|
[10]
|
D.L. Russell and B.Y. Zhang, Controllability and stabilizability of the thirdorder linear dispersion equation on a periodic domain, SIAM J. Control Optim., 31(1993), 659-676.
Google Scholar
|
[11]
|
R. Sakthivel, N.I. Mahmudov and Y. Ren, Approximate controllability of the nonlinear third-order dispersion equation, Appl. Math. Comp., 217(2011), 8507-8511.
Google Scholar
|
[12]
|
J.H. Wu, Theory and applications of partial functional differential equations, Appl. Math. Sci., vol. 119, Springer-Verlag, New York, 1996.
Google Scholar
|
[13]
|
Z. Zhao and Y. Xu, Solitary waves for Korteweg-de Vries equation with small delay, J. Math. Anal. Appl., 368(2010), 43-53.
Google Scholar
|