2013 Volume 3 Issue 3
Article Contents

Xuemei Wei, Shuliang Shui. THE SHAPE OF LIMIT CYCLES FOR A CLASS OF QUINTIC POLYNOMIAL DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2013, 3(3): 291-300. doi: 10.11948/2013021
Citation: Xuemei Wei, Shuliang Shui. THE SHAPE OF LIMIT CYCLES FOR A CLASS OF QUINTIC POLYNOMIAL DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2013, 3(3): 291-300. doi: 10.11948/2013021

THE SHAPE OF LIMIT CYCLES FOR A CLASS OF QUINTIC POLYNOMIAL DIFFERENTIAL SYSTEMS

  • Fund Project:
  • We consider the problem of finding limit cycles for a class of quintic polynomial differential systems and their global shape in the plane. An answer to this problem can be given using the averaging theory. More precisely, we analyze the global shape of the limit cycles which bifurcate from a Hopf bifurcation and periodic orbits of the linear center =-y, =x, respectively.
    MSC: 34C25;34C23;34D10;34C29
  • 加载中
  • [1] A. Buică and J. Llibre, Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math., 128(2004), 7-22.

    Google Scholar

    [2] J. Cao, Limit cycles of polynomial differential systems with homogeneous nonlinearities of degree 4 via the averaging method, J. Comput. Appl. Math., 220(2008), 624-631.

    Google Scholar

    [3] M. Carbonell and J. Llibre, Hopf bifurcation,averaging methods and Lyapunov quantities for polynomial systems with homogeneous nonlinearities, in Proc. Eur. Conf. on Iteration Theory, Singapore, (1989), 145-160.

    Google Scholar

    [4] L.A. Cherkas, Number of limit cycles of an autonomous second-order system, Differential Equations, 5(1976), 666-668.

    Google Scholar

    [5] B. Coll, J. Llibre and R. Prohens, Limit cycles bifurcating from a perturbed quartic center, Chaos, Solitons Fractals, 44(2012), 317-334.

    Google Scholar

    [6] H. Dulac, Sur les cycles limites, Bull. Soc. Math. France, 51(1923), 45-188.

    Google Scholar

    [7] J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualitiées Math. Hermann, Paris, 1992.

    Google Scholar

    [8] I.A. García and J. Giné, The center problem via averaging method, J. Math. Anal. Appl., 351(2009), 334-339.

    Google Scholar

    [9] H. Giacomini, J. Llibre and M. Viano, On the shape of limit cycles that bifurcate from Hamiltonian centers, Nonlinear Anal. Theory Methods Appl., 41(2000), 523-537.

    Google Scholar

    [10] H. Giacomini, J. Llibre and M. Viano, The shape of limit cycles that bifurcate from non-Hamiltonian centers, Nonlinear Anal. Theory Methods Appl., 43(2001), 837-859.

    Google Scholar

    [11] J. Giné and J. Llibre, Limit cycles of cubic polynomial vector fields via the averaging theory, Nonlinear Anal. Theory Methods Appl., 66(2007), 1707-1721.

    Google Scholar

    [12] J. Huang, F. Wang, L. Wang and J. Yang, A quartic system and a quintic system with fine focus of order 18, Bull. Sci. math., 132(2008), 205-217.

    Google Scholar

    [13] Y.S. Ilyashenko, Finiteness theorems for limit cycles, Russian Math. Surveys, 45(1990), 129-203.

    Google Scholar

    [14] C. Li, W. Li, J. Llibre and Z. Zhang, On the limit cycles of polynomial differential systems with homogeneous nonlinearities, Proc. Edinb. Math. Soc., 43(2000), 529-543.

    Google Scholar

    [15] J. Llibre, Averaging theory and limit cycles for quadratic systems, Rad. Mat., 11(2002), 215-228.

    Google Scholar

    [16] J. Llibre and C. Valls, On the limit cycles of polynomial differential system with homogeneous nonlinearities of degree 3 via the averaging method, preprint.

    Google Scholar

    [17] J. Llibre and X. Zhang, Hopf bifurcation in higher dimensional differential systems via the averaging method, Pacific journal of mathematics, 240(2009).

    Google Scholar

    [18] D. Pi and X. Zhang, Limit cycles of differential systems via the averaging methods, Can. Appl. Math. Q., 17(2009), 243-269.

    Google Scholar

    [19] R. Prohens and J. Torregrosa, Shape and period of limit cycles bifurcating from a class of Hamiltonian period annulus, Nonlinear Anal. Theory Methods Appl., 81(2013), 130-148.

    Google Scholar

    [20] J.A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, Appl. Math. Sci., Springer, New York, 59(2007).

    Google Scholar

    [21] S. Shi, A method of constructing cycles without contact around a weak focus, J. Differential Equations, 41(1981), 301-312.

    Google Scholar

    [22] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer-Verlag, Berlin, 1996.

    Google Scholar

Article Metrics

Article views(1719) PDF downloads(666) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint