[1]
|
A. Buică and J. Llibre, Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math., 128(2004), 7-22.
Google Scholar
|
[2]
|
J. Cao, Limit cycles of polynomial differential systems with homogeneous nonlinearities of degree 4 via the averaging method, J. Comput. Appl. Math., 220(2008), 624-631.
Google Scholar
|
[3]
|
M. Carbonell and J. Llibre, Hopf bifurcation,averaging methods and Lyapunov quantities for polynomial systems with homogeneous nonlinearities, in Proc. Eur. Conf. on Iteration Theory, Singapore, (1989), 145-160.
Google Scholar
|
[4]
|
L.A. Cherkas, Number of limit cycles of an autonomous second-order system, Differential Equations, 5(1976), 666-668.
Google Scholar
|
[5]
|
B. Coll, J. Llibre and R. Prohens, Limit cycles bifurcating from a perturbed quartic center, Chaos, Solitons Fractals, 44(2012), 317-334.
Google Scholar
|
[6]
|
H. Dulac, Sur les cycles limites, Bull. Soc. Math. France, 51(1923), 45-188.
Google Scholar
|
[7]
|
J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualitiées Math. Hermann, Paris, 1992.
Google Scholar
|
[8]
|
I.A. García and J. Giné, The center problem via averaging method, J. Math. Anal. Appl., 351(2009), 334-339.
Google Scholar
|
[9]
|
H. Giacomini, J. Llibre and M. Viano, On the shape of limit cycles that bifurcate from Hamiltonian centers, Nonlinear Anal. Theory Methods Appl., 41(2000), 523-537.
Google Scholar
|
[10]
|
H. Giacomini, J. Llibre and M. Viano, The shape of limit cycles that bifurcate from non-Hamiltonian centers, Nonlinear Anal. Theory Methods Appl., 43(2001), 837-859.
Google Scholar
|
[11]
|
J. Giné and J. Llibre, Limit cycles of cubic polynomial vector fields via the averaging theory, Nonlinear Anal. Theory Methods Appl., 66(2007), 1707-1721.
Google Scholar
|
[12]
|
J. Huang, F. Wang, L. Wang and J. Yang, A quartic system and a quintic system with fine focus of order 18, Bull. Sci. math., 132(2008), 205-217.
Google Scholar
|
[13]
|
Y.S. Ilyashenko, Finiteness theorems for limit cycles, Russian Math. Surveys, 45(1990), 129-203.
Google Scholar
|
[14]
|
C. Li, W. Li, J. Llibre and Z. Zhang, On the limit cycles of polynomial differential systems with homogeneous nonlinearities, Proc. Edinb. Math. Soc., 43(2000), 529-543.
Google Scholar
|
[15]
|
J. Llibre, Averaging theory and limit cycles for quadratic systems, Rad. Mat., 11(2002), 215-228.
Google Scholar
|
[16]
|
J. Llibre and C. Valls, On the limit cycles of polynomial differential system with homogeneous nonlinearities of degree 3 via the averaging method, preprint.
Google Scholar
|
[17]
|
J. Llibre and X. Zhang, Hopf bifurcation in higher dimensional differential systems via the averaging method, Pacific journal of mathematics, 240(2009).
Google Scholar
|
[18]
|
D. Pi and X. Zhang, Limit cycles of differential systems via the averaging methods, Can. Appl. Math. Q., 17(2009), 243-269.
Google Scholar
|
[19]
|
R. Prohens and J. Torregrosa, Shape and period of limit cycles bifurcating from a class of Hamiltonian period annulus, Nonlinear Anal. Theory Methods Appl., 81(2013), 130-148.
Google Scholar
|
[20]
|
J.A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems, Appl. Math. Sci., Springer, New York, 59(2007).
Google Scholar
|
[21]
|
S. Shi, A method of constructing cycles without contact around a weak focus, J. Differential Equations, 41(1981), 301-312.
Google Scholar
|
[22]
|
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer-Verlag, Berlin, 1996.
Google Scholar
|