2013 Volume 3 Issue 3
Article Contents

N. H. Zhao, Y. Xia, Wenxia Liu, P. J. Y. Wong, R. T. Wang. EXISTENCE OF ALMOST PERIODIC SOLUTIONS OF A NONLINEAR SYSTEM[J]. Journal of Applied Analysis & Computation, 2013, 3(3): 301-306. doi: 10.11948/2013022
Citation: N. H. Zhao, Y. Xia, Wenxia Liu, P. J. Y. Wong, R. T. Wang. EXISTENCE OF ALMOST PERIODIC SOLUTIONS OF A NONLINEAR SYSTEM[J]. Journal of Applied Analysis & Computation, 2013, 3(3): 301-306. doi: 10.11948/2013022

EXISTENCE OF ALMOST PERIODIC SOLUTIONS OF A NONLINEAR SYSTEM

  • Fund Project:
  • This paper considers the existence of almost periodic solutions of a N-dimension non-autonomous Lotka-Volterra model with delays. The method is based on exponential dichotomy and Schauder fixed point theorem. The obtained results generalize some previously known ones.
    MSC: 34D10;34C25;34D23;34K14;34K20
  • 加载中
  • [1] S. Ahmad, On almost periodic solutions of the competing species problems, Proc. Amer. Math. Soc, 102(1988), 855-865.

    Google Scholar

    [2] J. Chu and P. J. Torres, Applications of Schauder's fixed point theorem to singular differential equations, Bull. London Math. Soc.,39(2007), 653-660.

    Google Scholar

    [3] A. M. Fink, Almost Periodic Differential Equation, Springer-Verlag, Berlin, Heidleberg, New York, 1974.

    Google Scholar

    [4] K. Gopalsamy, Global asymptotic stability in a almost periodic Lotka-Volterra system, J. Aust. Math. Soc. Ser. B, 27(1986), 346-360.

    Google Scholar

    [5] J. K. Hale, Ordinary Differential Equations, Krieger, Huntington, 1980.

    Google Scholar

    [6] Y. Hamaya, Periodic solutions of nonlinear integro-differential equations, Tohoku. Math. J., 41(1989), 105-116.

    Google Scholar

    [7] X. Meng and L. Chen, Almost periodic solution of non-autonomous LotkaVolterra predator-prey dispersal system with delays, J. Theoret. Biol. 243(2006), 562-574.

    Google Scholar

    [8] S. MuRakami, Almost periodic solutions of a system of integro-differential equations, Tohoku. Math. J., 39(1987), 71-79.

    Google Scholar

    [9] Z. Teng, Permanence and stability of Lotka-Volterra type n-species competitive systems, Acta Math. Sinica, 45(2002), 905-918.

    Google Scholar

    [10] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer, New York, 1975.

    Google Scholar

Article Metrics

Article views(1426) PDF downloads(629) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint