[1]
|
F. Chen and L. Zhou, Strange attractors in a periodically perturbed Lorenz-like equation, J. Appl. Anal. Comput., 3(2)(2013), 123-132.
Google Scholar
|
[2]
|
W.C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos, Solitons and Fractals, 36(2008), 1305-1314.
Google Scholar
|
[3]
|
M.R. Faieghi and H. Delavari, Chaos in fractional-order Genesio-Tesi system and its synchronization, Commun. Nonlinear Sci. Numer. Simul., 17(2)(2012), 731-741.
Google Scholar
|
[4]
|
J.M. Gottman, J.D. Murray, C.C. Swanson, R. Tyson and K.R. Swanson, The Mathematics of Marriage, Cambridge, M. A.:MIT Press. 2002.
Google Scholar
|
[5]
|
J. He, A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul., 2(4)(1997), 230-235.
Google Scholar
|
[6]
|
O. Heaviside, Electromagnetic Theory, New York:Academic Press., 1971.
Google Scholar
|
[7]
|
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore., 2000.
Google Scholar
|
[8]
|
M. Javidi and N. Nyamoradi, Dynamic analysis of a fractional order phytoplankton model, J. Appl. Anal. Comput., 3(4)(2013), 343-355.
Google Scholar
|
[9]
|
V.G. Jenson and G.V. Jeffreys, Mathematical Methods in Chemical Engineering, New York:Academic Press., 1977.
Google Scholar
|
[10]
|
D. Kusnezov, A. Bulgac and G.D. Dang, Quantum levy processes and fractional kinetics, Phys Rev Lett., 82(1999), 1136-1139.
Google Scholar
|
[11]
|
N. Laskin, Fractional market dynamics, Phys. A, 287(3-4)(2000), 482-492.
Google Scholar
|
[12]
|
X. Liao and J. Ran, Hopf bifurcation in love dynamical models with nonlinear couples and time delays, Chaos Soliton. Fract., 31(2007), 853-865.
Google Scholar
|
[13]
|
K. Li and J. Wei, Stability and Hopf bifurcation analysis of a prey-predator system with two delays, Chaos Solitons Fractals, 42(5)(2009), 2606-2613.
Google Scholar
|
[14]
|
M.C. Mackey and L. Glass, Oscillations and chaos in physiological control systems, Science, 197(1997), 287-289.
Google Scholar
|
[15]
|
D. Matignon, Stability properties for generalized fractional differential systems, in Systèmes différentiels fractionnaires (Paris, 1998), 145-158, ESAIM Proc., 5, Soc. Math. Appl. Indust., Paris.
Google Scholar
|
[16]
|
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, San Diego, CA, 1999.
Google Scholar
|
[17]
|
A. Rapoport, Fights, Games and Debates, Ann. Arbor:University of Michigan Press., 1960.
Google Scholar
|
[18]
|
M.J. Radzicki, Dyadic processes, tempestuous relationships and system dynamics, System Dynamics Review., 9(1993), 79-94.
Google Scholar
|
[19]
|
S. Rinaldi, Love dymamics:the case of linear couples, Applied Mathematics and Computatin., 95(2-3)(1998), 181-192.
Google Scholar
|
[20]
|
S. Rinaldi, Laura and Patriarch:an intriguing case of cyclical love dynamics, SIAM J. Appl. Math., 58(1998), 1205-1221.
Google Scholar
|
[21]
|
S. Rinaldi and A. Gragnani, Love dynamics between secure individuals:a modeling approach, Nonlinear Dyn. Psyc. Life Sci., 2(2004), 283-301.
Google Scholar
|
[22]
|
L. Song, S. Xu and J. Yang, Dynamical models of happiness with fractional order, Commun. Nonlinear Sci. Numer. Simul., 15(3)(2010), 616-628.
Google Scholar
|
[23]
|
J.C. Sprott, Dynamical models of love, nonlinear dynamics, Psychology and Life Science, 8(2004), 303-314.
Google Scholar
|
[24]
|
S.H. Strogatz, Love affairs and differential equations, Math. Mag., 61(1988), 35.
Google Scholar
|
[25]
|
S.H. Strogatx, Nonlinear dynamics and chaos:with applications to physics, biology, chemistry and engineering, Addison-Wesley, Reading, MA, (1994), 498.
Google Scholar
|
[26]
|
J. Wauer, D. Schwarzer, G.Q. Cai and Y.K. Lin, Dynamical models of love with time-varying fluctuations, Appl. Math. Comput., 188(2007), 1535-1548.
Google Scholar
|
[27]
|
X. Wu and C. Zhang, Dynamic properties of the Oregonator model with delay, J. Appl. Anal. Comput., 2(1)(2012), 91-102.
Google Scholar
|
[28]
|
M.Y. Xu and W. Tan, Intermediate processes and criticalphenomena:Theory, method and progress of fractional operators and their applications to modern mechanics, Science in China, 49(2006), 257-272.
Google Scholar
|
[29]
|
Z. Yang, T. Jiang and Z. Jing, Bifurcations of periodic solutions and chaos in Duffing-van der Pol equation with one external forcing, J. Appl. Anal. Comput., 3(4)(2013), 405-431.
Google Scholar
|
[30]
|
P. Zhou, L.J. Wei and X.F. Cheng, One new fractional-order chaos system and its circuit stimulation by electronic workbench, Chinese Physics., 17(2008), 3252-3257.
Google Scholar
|